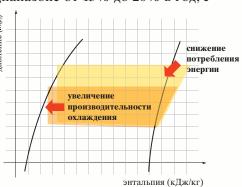


Пропорциональный электронный расширительный клапан

Электронные расширительные клапаны E^2V компании CAREL с пропорциональной модуляцией и превосходными техническими и функциональными характеристиками обеспечивают эффективный контроль установок охлаждения и кондиционирования воздуха и, как следствие, сбережение электроэнергии. Расход хладагента регулируется при помощи сопла конической формы (длина более 15 мм, широкий рабочий диапазон). Внутренний механизм, установленный на калиброванной пружине с шарикоподшипниками, обеспечивает стабильное и надежное регулирование, уменьшая риски возникновения аварий. *E*²*V* полностью изготовлен с помощью метода лазерной сварки из высококачественных материалов (AISI 316L) и технологических полимеров. Компания CAREL уделила особое внимание мельчайшим деталям при разработке E²V для обеспечения очень высокой надежности при работе в условиях перепада давления до 35 бар и до 42 бар абсолютного давления. Другой особенностью является осевое перемещение отверстия сопла и уплотнительной прокладки в момент закрытия клапана. Установив только один расширительный клапан, можно избежать использования невозвратных клапанов, что значительно упрощает холодильный контур.

Технология & Эволюция

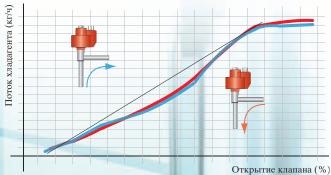
Новая современная технология расшир


Сохранение электроэнергии

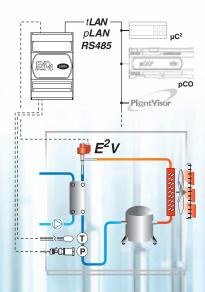
Широкий диапазон работы при различных перепадах давления и точность регулирования обеспечивает значительное сбережение электроэнергии. Использование технологии E^2V обеспечивает сбережения, которые преобразуются в очень быстро возвращаемые инвестиции.

В дополнении, было доказано, что в торговых холодильных установках и в кондиционируемых телекоммуникационных контрольных комнатах снижение потребления энергии, которое может быть получено при использовании E^2V вместе с контролем плавающего давления находится в диапазоне от 15% до 20% в год, с пиками до 30%.

Подобные результаты могут быть получены во всех аппликациях охлаждения и кондиционирования воздуха, работающих


из года в год.

павление перегрев


Точное регулирование

 E^2V выделяется среди других благодаря своему качеству управления и способности быстро достигать и поддерживать стабильность работы установки. Последний аспект делает его идеальным для точного кондиционирования воздуха, телекоммуникационных (помещений) и промышленных холодильных аппликаций. В дополнении к сбережению электроэнергии, E2V также обеспечивает увеличение производительности и стабильность установки.

Ши<mark>роки</mark>й диапазон работы

Равнопроцентное изменение скорости потока хладагента на шаг открытия E^2V в обоих направлениях обеспечивает высокоточное регулирования во всех аппликациях, даже при низкой скорости потока.

Двухнаправленный поток

Клапаны E^2V поддерживают параметры потока и следовательно точность в обоих рабочих направлениях, позволяя этим заменить работу двух традиционных расширительных клапанов в тепловых насосах с реверсивным циклом. В обоих направлениях производительность охлаждения является одинаковой и тоже самое справедливо в отношении линейности потока.

ения в различных холодильных аппликациях

Системы управления

Компания CAREL предлагает ряд решений по управлению электронными расширительными клапанами E^2V . Работа E^2V основана на контролировании перегрева хладагента вместе с некоторыми дополнительными функциями (MOP, LOP): Для того чтобы вычислить данные значения, необходимо установить на выходе из испарителя датчики температуры и давления.

Расширение хладагента управляется алгоритмом контроля CAREL, который вычисляет идеальную позицию подвижного элемента в реальном времени, и затем использует драйвер со встроенным шаговым двигателем для передвижения на вычисленую позицию.

Показания датчика, алгоритм управления и позиция драйвера могут контролироваться при использовании встроенных устройств или отдельных модулей. В первом случае устройства являются встроенными в основной контроллер (например, Mastercase co встроенным драйвером EEV). Во втором случае отдельные модули EVD400 могут управляться программируемым контроллером (рСО), параметрическим контроллером (μ C²), или с помощью простого цифрового входа взятого с любого параметрического контроллера, изготовленного компанией CAREL или другими производителями.

При использовании программируемых контроллеров, система EasyTools позволяет настроить алгоритм управления для того чтобы приспособить работу к отдельным задачам инсталляции (откачка, осушение

и другие). Для параметрических контроллеров, с другой стороны, предусмотренные функции представляют полное решение задач в стандартных системах.

Мониторинг: Профилактическое обслуживание и эффективное управление тревогами может осуществляться путем мониторинга значения перегрева хладагента и, следовательно, шага открытия *E*²*V* и значений других параметров с системы мониторинга (локальной и удаленной).

.....

Техническое описание

E²V

Совместимость	R22, R134a, R404A, R407C,		
	R410A, R744, R507A		
Макс. рабочее Давление (МОР)	До 42 бар		
Макс. рабочее Давление Р (MOPD)	35 бар		
P.E.D.	N/A: Gr. 1, art. 3, par. 3		
Температура хладагента	-40T65 °C		
Комнатная температура	-30T50 °C		

Статор **E²V -** Двухполюсный низковольтный статор (2 фазы - 24 полюсные колодки)

Фазный ток	450 mA		
Частота привода	50 Hz ±10		
Сопротивлен. фазы	(25 °C/77 °F)	36 Ω ±10%	
Индекс защиты	IP65 с коннектором E2VCON*		
	IP67 с кабелем	E2VCAB*	
Угол шага	15°		
Линейное			
продвижение/шаг	0.03 мм		
Соединения	4 провода (AWC	G 18/22)	
Шаги регулирован.	480		

Коды

Коды продуктов, которые доступны в настоящее время для E^2V приведены ниже. По поводу продуктов, которые не отражены здесь или за любой дополнительной информацией, пожалуйста, обращайтесь в CAREL (e-mail: eev-technology@carel.com).

Коды клапанов

E2V**BS000	Без соединений, 10 мм Нержавеющая сталь		
E2V**BSF00	Медные соединения 12 мм - 12 мм ODF		
E2V**BSM00	Медные соединения 16 мм - 16 мм ODF		
E2V**BRB00	Латунные фитинги с резьбой, 3/8"-1/2" SAE		
Клапаны в упаковке не содержат соединителей.			

Коды опций/запасных частей

E2VCON0000	Упаковка кабельных соединителей ІР65
E2VCAB0600	Кабели с соединителями, 3.0 м ІР67
E2VCAB0300	Кабели с соединителями, 6.0 м ІР67
E2VSTA0200	Запасной статор для E2V*B*

E²**V** - производительность охлаждения (1)

Кондиционирование воздуха - Конденсация= 38 °C Кипение= 4,4 °C

	R22	R134a	R404A	R410A	R407C	R507A
E2V09	2,6	2,0	1,8	3,1	2,6	1,8
E2V11	4,5	3,5	3,3	5,4	4,7	3,2
E2V14	6,9	5,3	5,0	8,3	7,1	4,9
E2V18	9,9	7,6	7,1	11,8	10,1	6,9
E2V24	19,6	15,1	14,1	23,6	20,2	13,8
E2V35	39,5	30,3	28,4	47,5	40,6	27,7

Недогрев 1°С

NT Охлаждение - Конденсация= 40 °C Кипение= -15 °C

E2V09	2,9	2,2	2,1	3,6	3,0	2,0
E2V11	5,2	3,9	3,7	6,4	5,3	3,6
E2V14	8,0	6,0	5,7	9,8	8,0	5,5
E2V18	11,4	8,5	8,0	13,9	11,5	7,8
E2V24	22,6	16,9	16,0	27,6	22,9	15,6
E2V35	45,5	34,0	32,2	55,6	46,2	31,5

Недогрев 5°С

Ц Охлаждение - Конденсация= 40 °С Кипение= -40 °С

E2V09	3.0	2.1	2.0	3.6	2.9	1.9
E2V11	5,3	3,8	3,5	6,4	5,2	3,4
E2V14	8,1	5,8	5,4	9,9	8,0	5,2
E2V18	11,5	8,2	7,6	14,0	11,3	7,4
E2V24	23,0	16,3	15,2	27,9	22,6	14,8
E2V35	46.3	32.9	30.5	56.2	45.5	29.8

Недогрев 5°С

(1) Падение давления на конденсаторе 0.5 бар, Падение давления на испарителе 0.5 бар.

