

Руководство пользователя

Мы хотим, чтобы вы сэкономили ваше время и деньги! Внимательное ознакомление с этим руководством гарантирует правильную установку и безопасное использование описанного продукта.

ВАЖНЫЕ ЗАМЕЧАНИЯ

Перед установкой или началом эксплуатации этого устройства внимательно прочитайте это руководство и следуйте приведенным в нем инструкциям.

Данное устройство разработано для обеспечения его безопасной работы и выполнения конкретных задач, однако при этом должны выполняться следующие требования:

- установка, функционирование и обслуживание устройства должны соответствовать инструкциям, приведенным в этом руководстве пользователя;

- должны соблюдаться указанные требования относительно условий окружающей среды и напряжения источника питания.

Все применения и модификации устройства, которые не утверждены производителем, рассматриваются в качестве недопустимых и, соответственно, вся ответственность за несчастные случаи и повреждения, связанные с неправильным использованием, лежит исключительно на пользователе.

Пожалуйста, учтите, что этот блок содержит электрические компоненты, находящиеся под напряжением, и, поэтому, все работы по техническому обслуживанию должны проводиться только после отключения блока от питающей электросети; работы должны выполняться специалистами или квалифицированным персоналом, который ознакомлен с необходимыми мерами предосторожности.

Утилизация компонентов контроллера

Контроллер содержит металлические и пластмассовые части, а также литиевый аккумулятор. Все эти компоненты следует утилизировать в соответствии с действующими местными правилами утилизации.

СОДЕРЖАНИЕ

1.	ВВЕДЕНИЕ	3
1.1	Основные преимущества контроллера Energy ²	3
1.2	Доступные модели	3
1.3	Основные возможности контроллеров Energy ²	3
1.4		4 6
2. 21	Терминальный блок	0 6
2.1	1 Пифровые выхолы (ХА)	0
2.1.	2 Электрическое подключение нагрузок к контактам реле NO (нормально открыт)	7
2.1.	3 Электрическое подключение нагрузок к контактам реле NC (нормально замкнутый)	7
2.1.	4 Цифровые входы (XA1)	8
2.1.	5 Аналоговые выходы (XA2)	8
2.1.	6 Плата конвертера импульсов мощности (А2): подключение электрических сигналов	8
2.1.	7 Аналоговые входы (ХАЗ)	9
ა. ვ1	Берсия «Small» контроллера Energy ⁻ – ENERG 17000	9 0
3.1	терминальный олок версий «оптан»	9 10
3.1.	 Эпектрическое полключение нагрузок к контактам репе NO (нормально открыт) 	10
3.1.	3 Подключение выхода аварийных сигналов в контактам реле NC (нормально замкнутый)	. 10
3.1.	4 Цифровые входы (ХА1)	. 10
3.1.	5 Плата конвертера импульсов мощности (А2): подключение электрических сигналов	. 10
3.1.	6 Аналоговые входы (ХАЗ)	. 10
4.	ИНТЕРФЕИС ПОЛЬЗОВАТЕЛЯ	. 11
4.1	Дисплеи	. 11
4.Z	Встроенный терминал	. 12
4.J 4.3	окраны	. 12 12
5.	ПОДКЛЮЧЕНИЕ К СИСТЕМЕ	15
5.1	Связь эмиттера сигналов с контроллером Energy ²	. 15
5.1.	1 Потребляемая активная энергия	. 16
5.1.	2 Тарифные диапазоны по контрактам	. 18
5.2	Связь анализатора мощности питающей сети с контроллером Energy ²	. 20
5.3	Связь преобразователей тока (СТ) с контроллером Energy ² (только при сбалансированной нагрузке)	. 21
5.3.	1 Калибровка электронных преобразователей тока	. 22
0. 7	Связь контроллера Energy ² с системои супервизора	. 24 24
7. 71	ТГОГ ГАМИИА Управление электрознергией	. 24 24
7.2	Управление опсигрознергиси	24
7.3	Временные интервалы	25
8.	ИНИЦИАЛИЗАЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	. 26
8.1	Экраны главного меню	. 26
8.2	Раздел «Installer» (Инсталлятор)	. 29
8.2.	1 Цикл «Power settings» (Установки мощности)	. 29
8.Z. 0.2	2 Цикл «Load configuration» (Конфигурирование нагрузки)	. 32 21
0.2.	5 цикл «Alann setting» (Установки аварийных сигналов)	. 34 35
8.3	ч циют «оналус раззиона» (изменить пароль) Обслуживание	35
8.3.	1 Цикл «Rate band setting» (Установка тарифного диапазона)	35
8.3.	2 Цикл «Probe offsets» (Смещения датчиков)	. 36
8.3.	3 Цикл «Reset counters» (Сброс счетчиков)	. 37
8.3.	4 Цикл «Aux IO and change password» (Вспомогательный ввод-вывод и смена пароля)	. 37
8.4	Пользователь	. 38
8.4.	1 Цикл «Load configuration» (Конфигурирование нагрузки)	. 38
0.4. Q /	2 Цикл «Типе band setting» (установка временного диапазона)	. ວວ 12
84	4 Цикл «Сепропал (Контрольная Точка)	43
8.5	Язык	. 44
9.	УПРАВЛЕНИЕ ВРЕМЕННЫМИ ДИАПАЗОНАМИ ВКЛЮЧЕНИЯ/ОТКЛЮЧЕНИЯ	. 44
9.1	Стандартные диапазоны	. 44
9.2	Специальные диапазоны	. 44
9.3	Оптимальный запуск/останов	. 45
9.4	компенсация для рабочеи точки температуры	. 45
9.0 0.6	Гаронина Цикланина З напозранным рентипем	.40 17
9.0 0.7	лиравление с использованием сумеречного индикатора	. ++/ ⊿7
10	СПИСОК АВАРИЙНЫХ СИГНАЛОВ	48
11.	СПИСОК ПЕРЕМЕННЫХ СУПЕРВИЗОРА	. 50
12.	СХЕМЫ СОЕДИНЕНИЙ	. 57
12.1	Модель «LARGE»	. 57
12.2	Версия «Small»	. 58
13.	ТЕХНИЧЕСКИЕ СПЕЦИФИКАЦИИ	. 59

При установке должны соблюдаться следующие требования:

- не устанавливайте устройство в средах со следующими характеристиками: резкие смены температуры окружающей среды в широких пределах; превышение указанных ограничений для температуры и относительной влажности; эксплуатация при непосредственном воздействии струи воды; высокие уровни магнитного и/или радиочастотного излучения (например, от передающей антенны);
- использование кабельных окончаний, соответствующих клеммам устройства. Открутите каждый из винтов, вставьте окончание кабеля, а затем закрутите винт. После завершения этой операции слегка потяните кабель, чтобы убедиться, что он прочно закреплен;
- разнесите как можно дальше друг от друга сигнальные кабели и кабели, несущие индуктивные нагрузки, а также силовые кабелей, чтобы избежать возможности влияния электромагнитных помех. Никогда не помещайте в один и тот же кабелепровод силовые кабели (включая и электрические кабели) и кабели сигнальных датчиков. Не прокладывайте кабели датчиков в непосредственной близости от силовых устройств (контакторов, сетевых прерывателей и т. п.);
- сократите, насколько это возможно, длину кабелей датчиков и избегайте их прокладки вокруг силовых устройств. В качестве кабелей датчиков используйте провода с минимальным сечением 0,5 мм²;
- для кабелей подключаемых к контактам контроллера, необходимо оценить их максимальную рабочую температуру — для этого следует к максимальному допустимому значению температуры окружающей среды добавить нагрев самого контроллера, равный 20°С;
- выполните необходимую защиту линий силовой нагрузки на контроллере с использованием устройств (сетевых прерывателей), имеющих номинальные характеристики, соответствующие подключенным нагрузкам.

Меры безопасности для операторов при работе с контроллером.

Чтобы обеспечить безопасность работы операторов и защитить контроллер, перед выполнением любых работ на панели всегда отключите источник питания. Электронные компоненты могут быть повреждены в результате попадания электростатического разряда от оператора. Ввиду этого при обращении с компонентами должны соблюдаться следующие меры предосторожности:

- Перед выполнением любых работ с контроллером притроньтесь к заземленному объекту (не притрагивайтесь к карте, чтобы избежать возникновения высоковольтного разряда – статическое электричество может создавать импульсы разряда 10000 В, которые формируют дугу порядка 1 см);
- Все материалы при их хранении должны находиться в их исходной упаковке. Если это требуется, вынимайте контроллер из упаковки и помещайте его в антистатическую упаковку, не притрагиваясь руками к обратной стороне платы.
- Категорически запрещается использовать неантистатические пластиковые пакеты, полистирол или губку; также не передавайте контроллер другим операторам (чтобы не допустить формирование электростатической индукции и разрядов).

ВНИМАНИЕ!

Никогда не подключайте цифровые выходы контроллера к исходным нагрузкам! Компания не несет никакой ответственности за любые повреждения устройств при их неправильной установке.

Глоссарий Loop (Цикл) = группа экранов, выделенная в соответствии с типом доступа (пользователь, техническое обслуживание, установщик...) Screen (Экран) = страница на дисплее, на которой отображается информация Priority (Приоритет) = порядок коммутации нагрузок при их подключении и отключении в случае превышения энергопотребления Set point (Контрольная точка) = рабочая точка Shed (Сброс) = отключение (нагрузки) CT = преобразователь тока

1. ВВЕДЕНИЕ

Energy² — это монтируемый на панели электронный микропроцессорный контроллер, который разработан специально для сбора данных о потреблении электроэнергии в точке ее поставки от электрокомпании (точке подключения к линии электроснабжения), а также для выполнения соответствующего управления электрическими нагрузками.

Чтобы обеспечить точный мониторинг нагрузки и соответствующее существенное энергосбережение, необходимо использовать универсальную систему, которая легко адаптируется к требованиям систем различных типов, а применяемые в ней методы анализа и стратегии управления точно соответствуют критериям оплаты, используемым электрической компанией.

1.1 Основные преимущества контроллера Energy²

Система позволяет заказчику добиться ряда важных результатов, таких как:

- Централизованное управление с помощью только одного контроллера и последующая передача в систему супервизора всех данных об энергопотреблении, что гарантирует точность мониторинга;
- Ограничение, там где это возможно, превышения номинального потребления мощности, установленного по контракту, путем интеллектуального управления нагрузками;
- Исключение штрафов по контракту, таких, например, как:
 - - применение при расчете оплаты повышенной номинальной мощности даже в тех случаях, когда это связано только со случайными превышениями;

-· - одноразовые счета за подключение к сети электроснабжения вследствие случайных превышений нагрузки;

- улучшение использования электроэнергии путем активации нагрузок в заранее запрограммированное время, для того чтобы исключить любые потери;
- оптимизация определенных нагрузок, таких как кондиционеры воздуха или системы обогрева, с помощью таких функций, как OPTIMUM START-STOP (Оптимальный запуск-останов) и DUTY CYCLING (Рабочий цикл);
- выявление наиболее пригодного энергетического контракта для эффективного выполнения требований путем постоянного мониторинга использования энергии.

Было продемонстрировано, что детальные сведения о конкретных требованиях к энергопотреблению и умелое управление потреблением могут существенно снизить затраты на электроэнергию для любой компании.

1.2 Доступные модели

Контроллер Energy² доступен в двух версиях: «Large» (Большая) и «Small» (Малая).

В версии «Large» имеются 15 выходов реле, которые доступны для выполнения деактивации/активации нагрузок (5 из них являются перенастраиваемыми) и один выход аварийной сигнализации — всего 16 выходов, управляемых с помощью ПО

В версии «Small» имеются 4 выходов реле для управления устройствами и один выход аварийной сигнализации (перенастраиваемый) — всего 5 выходов, управляемых с помощью ПО

Обе модели гарантируют высокую гибкость и поэтому могут применяться в множестве различных приложений.

Код	Описание
ENERGY2120	Электрическая панель контроллера Energy ² типа «Large»
ENERGY7060	Электрическая панель контроллера Energy ² типа «Small»

Таблица 1.1

1.3 Основные возможности контроллеров Energy²

Источник питания

Модели контроллеров питаются напряжением 230 В переменного тока и имеют индикатор, сигнализирующий наличие питания. Имеются два плавких предохранителя для электроники и дополнительный термомагнитный выключатель для защиты от перегрузки для цифровых выходов на плате и всех неэлектронных компонентов панели.

Внешний вид и эргономика

Внешний вид контроллера выбран при разработке таким, чтобы он соответствовал новым линиям контроллеров для супермаркетов.

Дисплей и клавиатура

Контроллер Energy² содержит жидкокристаллический дисплей 4 х 20 с задней подсветкой, 6 кнопок клавиатуры и 4 светодиодных индикатора, управляемых прикладным ПО; все индикаторы встроены в пластиковый корпус контроллера.

Рабочий цикл

Потребление электроэнергии может быть оптимизировано путем отключения или включения нагревателей или охлаждающих устройств в определенное время в соответствии с отклонением от контрольной точки.

Оптимальный запуск-останов

Данная функция используется, чтобы улучшить управление системой кондиционирования воздуха — для вычисления времени предварительного запуска (утром) и предварительного отключения (вечером). Это необходимо для достижения внутри здания оптимальной температуры без излишнего расхода электроэнергии.

Контакты переключения

В модели «Large» имеются 5 релейных выходов с контактами переключения («NC» (нормально замкнутый)/»NO» (нормально разомкнутый)), которые выбираются ПО, для того чтобы гарантировать работу критических устройств в случае отказов контроллера. Однако в версии «Small» имеется только один выход с переключаемыми контактами, который используется для аварийных сигналов.

Часы реального времени (RTC, Real Time Clock)

Обе версии укомплектованы часами реального времени.

Светочувствительный датчик

Только в модели «Large» была введена новая функция для управления нагрузками: все 15 нагрузок могут контролироваться с помощью сумеречного датчика в соответствии с параметром, настроенным в программном обеспечении.Эта функция может, например, оптимизировать использование внешних ламп и, таким образом, регулировать энергопотребление.

Защита экрана

Доступ может быть ограничен на программном уровне с помощью 4 разных паролей, чтобы предотвратить доступ для неавторизованных лиц.

Последовательная связь

Контроллер имеет последовательный выход по протоколу RS485 (два провода в экране) для сетевого подключения к супервизору или системе дистанционного обслуживания.

Показатель защиты

Панель и пластиковый корпус имеют индекс защиты IP65.

Тестирование продукта и метка Продукция прошла 100 % функциональное тестирование. Кроме того, качество и безопасность гарантируются сертифицированной на соответствие стандарту ISO 9001 системой проектирования и производства компании Carel, а также маркировкой CE, имеющейся на продукте.

Электромагнитная совместимость

Серия контроллеров Energy² соответствует стандартам ЕС на электромагнитную совместимость.

1.4 Функции

Контроллер Energy² управляет ожидаемым активным энергопотреблением на временном интервале. Этот период (обычно 15 или 30 минут) отражает то эталонное время, которое используется электрическими компаниями для выставления счетов за электроэнергию пользователю. Энергопотребление, рассчитанное на основе этого времени, затем применяется для выставления счета и проверки фактически потребленной пользователем энергии по контракту. Допустимо временное превышение лимитов энергии, а управляющее воздействие (отключение нагрузок) начинает применяться только в тех случаях, когда среднее прогнозируемое значение превышает максимальную величину для этого параметра. Путем отключения нагрузок производится оптимизация энергопотребления, тем самым удается избежать применения штрафных санкций, повышения оплаты или применения более высоких тарифов (в зависимости от страны и применяемых правил).

Управляющее воздействие осуществляется по отношению к электрическим нагрузкам, подключенным к контроллеру Energy². Отключаются на короткий промежуток времени те нагрузки, которые не являются критическими, с тем чтобы снизить энергопотребление до разрешенного граничного значения. Отключенные нагрузки затем снова подключаются, когда для этого возникают соответствующие условия.

Для каждой из электронагрузок может быть настроен метод отключения, приоритетность и времена включения и отключения. В контроллере Energy² для управления энергопотреблением на основе текущих данных о мощности могут применяться два различных метода, которые выбираются с помощью программного обеспечения: **PULSE** (импульсный сигнал) или **ANALOG** (аналоговый сигнал).

Рис. 1.1

PULSE. Этот режим используется в том случае, если по запросу заказчика электрическая компания установила плату эмиттера сигналов непосредственно на счетчике. Этот интерфейс обычно формирует импульсы, соответствующие активной энергии и реактивной энергии на двух контактах, чтобы сигнализировать об изменении текущей оценки, а также сигнал сброса для времени вычисления потребления (обычно 15 или 30 минут). Контроллер Energy² может взаимодействовать с этой платой, интерпретируя сигнал об активной мощности и считывая значение с контактов, чтобы изменить тарифный диапазон и сбросить сигнал, если это необходимо. Если отсутствует плата эмиттера сигналов, потребуется внешний трехфазный анализатор мощности, который формирует импульсный сигнал, соответствующий потреблению (он указан в предлагаемом компанией CAREL дополнительном оборудовании, в конце этого руководства).

Это устройство, подключаемое к трехфазной сети питания через внешние преобразователи, может измерять напряжение, ток фазы, сдвиг (cos φ), а также активную, реактивную и фиксируемую мощность.

Импульсный сигнал на выходе устройства, отражающий потребляемую системой энергию, считывается контроллером Energy² и используется для подсчета энергопотребления, обработки всех параметров и управления подключенными устройствами.

ANALOG. Этот режим необходимо выбрать, если сигнал о потреблении поступает непосредственно с преобразователя тока (Current Transducer, CT) с выхода 4 — 20 мА (показан в дополнительных устройствах компании CAREL, приведенных в конце этого руководства).

В этом режиме считывания текущий сигнал подается на специальный вход контроллера Energy², который вычисляет потребление и производит соответствующее управление подключенными устройствами.

ВНИМАНИЕ. Режим ANALOG нельзя использовать, если применяется версия «Small» контроллера Energy².

2. Версия «LARGE» контроллера Energy² – ENERGY2120

Эта версия устанавливается в качестве электрической панели на модулях шины 18 + 18 DIN (рис. 2.1). В верхней части размещается программируемый контроллер CAREL с программным обеспечением и встроенным терминалом. В нижней части имеется терминальный блок для подключения электрических нагрузок, датчиков и других требуемых устройств.

Электроснабжение контроллера управляется посредством отключающего переключателя питания, а также сигнализируется посредством индикаторной лампы.

Рис. 2.1

2.1 Терминальный блок

Терминальный блок внутри панели (рис.. 2.2) разделен на пять секций, помеченных различными кодами: **ХА** = цифровые выходы

ХА1 = цифровые входы

ХА2 = аналоговые выходы

A2 = преобразователь импульсов мощности, 2 DIN-модуля (PCO208DI00)

ХАЗ = аналоговые входы

connection

Load connections	Контакты нагрузки
Digital input connections	Контакты цифровых входов
0 to 10Vdc analogue output for three way valve	Аналоговые выходы 0 – 10 В постоянного тока для 3-направленного вентиля
Active power impulse connection	Контакт активного импульса мощности
Analogue input connection: 4 to 20 mA CT and NTC probes	Контакт аналогового входа: датчики СТ и NTC с выходом от 4 до 20 мА

2.1.1 Цифровые выходы (ХА)

Терминальный блок ХА подключается к устройствам (максимум 15 нагрузок), конфигурируемым с помощью ПО, которые контроллер Energy² может отключать или повторно подключать, если вход мощности превышает максимальное потребление, установленное для системы. При этом сохраняются значения времени и приоритеты. Сведения о контактах приведены в следующей таблице.

	Номер контакта	Описание
N1-NO1	(нормально открыт)	Подключение нагрузки 1
N2-NO2	(нормально открыт)	Подключение нагрузки 2
N3-NO3	(нормально открыт)	Подключение нагрузки 3
N4-NO4	(нормально открыт)	Подключение нагрузки 4
N5-NO	(нормально открыт)	Подключение нагрузки 5
N6-NO6	(нормально открыт)	Подключение нагрузки 6
N7-NO7	(нормально открыт)	Подключение нагрузки 7
N8-NO8 / NC8	(переключение)	Подключение нагрузки 8
N9-NO9	(нормально открыт)	Подключение нагрузки 9
N10-NO10	(нормально открыт)	Подключение нагрузки 10
N11-NO11	(нормально открыт)	Подключение нагрузки 11
N12-NO12 / NC12	2 (переключение)	Подключение нагрузки 12
N13-NO13 / NC13	3 (переключение)	Подключение нагрузки 13
N14-NO14 / NC14	1 (переключение)	Подключение нагрузки 14
N15-NO15 / NC15	б (переключение)	Подключение нагрузки 15
N16-NO16	(нормально открыт)	Общий аварийный сигнал

Таблица 2.1

Все реле нагрузки (на терминальном блоке ХА) имеют напряжение на выходах (230 В переменного тока) и максимальный ток 8 А (резистивный).

ВНИМАНИЕ. Ток, протекающий через общие выводы, не должен превышать номинальный ток каждого отдельного вывода, составляющий 8 А для контактов подключения.

16 реле, имеющиеся в модели «Large», разделяются на следующие группы: 11 реле с нормально открытыми контактами и 5 реле с переключаемыми контактами — все они защищены варисторами 250 В переменного тока.

2.1.2 Электрическое подключение нагрузок к контактам реле NO (нормально открыт)

Цифровые выходы 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 и 16 (см. табл. 2.1) имеют нормально открытые контакты мощности. В этом случае, если контроллер при измерении обнаруживает превышение мощности и эти выходы активированы, реле размыкает контакты. В случае сбоя питания на контроллере контакты реле остаются открытыми. Проверьте, не возникают ли в этом случае проблемы, и, если это необходимо, используйте конфигурацию NC (нормально замкнутый).

Рис. 2.3

2.1.3 Электрическое подключение нагрузок к контактам реле NC (нормально замкнутый)

С другой стороны, цифровые выходы 8-12-13-14-15 (см. табл. 2.1) имеют переключаемые контакты реле мощности. С помощью ПО на экранах, относящихся к конфигурированию нагрузок (см. цикл «Installer»), может быть выбран следующий статус реле в нормальных условиях: «разомкнуто» (N.O.) или «замкнуто» (N.C.).

Если выбрано значение «N.O.», реле работает как это показано в предыдущем примере. И наоборот, при выборе значения «N.C.» контроллер измеряет избыточную мощность и, если эти контакты были активированы для отключения нагрузок, контакты реле будут разомкнуты (в соответствии с установкой в ПО).

В случае сбоя питания на контроллере реле перейдет в замкнутое состояние или останется в этом состоянии. Этот режим используется для того, чтобы не отключать особо важные устройства при отказе контроллера Energy² или при возникновении каких-либо неполадок на этом контроллере.

2.1.4 Цифровые входы (ХА1)

Назначение контактов на терминальном блоке ХА1 указано в следующей таблице.

Номер контакта	Описание
ID1-C1	Индикация пикового часового тарифного диапазона (с платы эмиттера сигналов)
ID2-C2	Индикация верхнего тарифного диапазона (с платы эмиттера сигналов)
ID5-C5	Сигнал 15-минутного таймера (с платы эмиттера сигналов)
ID6-C6	Расширение работы за пределы временных диапазонов
ID7-C7	Вход включения/выключение от сумеречного индикатора
ID8-C8	NC (для использования в будущем)
ID9-C9	NC (для использования в будущем)
ID10-C10	NC (для использования в будущем)
ID11-C11	NC (для использования в будущем)
ID12-C12	NC (для использования в будущем)

Таблица 2.2

Примечание Цифровые входы, соответствующие сигналам активной и реактивной энергии, не показаны в таблице, так как они должны подключаться к плате конвертера импульсов (А2).

2.1.5 Аналоговые выходы (ХА2)

На терминальном блоке ХА2 имеются для пользователя выходы аналогового сигнала (от 0 до 10 В) для управления 3-направленным вентилем.

Номер контакта	Описание	
Y1-0	3-направленный вентиль (для кондиционирования воздуха)	
		Таблица 2.3

Подробные сведения об управлении с использованием 3-направленного вентиля см. в главе «Программа».

2.1.6 Плата конвертера импульсов мощности (А2): подключение электрических сигналов

Если контроллер Energy² используется в рабочем режиме «PULSE» (Импульсный) (используется анализатор питающей сети или плата эмиттера сигналов, см. «Installer» (Инсталлятор) на экране I34), провода, соответствующие входам для считывания импульсов, будут подключаться непосредственно к терминальному блоку на аппаратной плате (А2) в соответствии с приведенной ниже схемой.

Номер входа				Описание					
5 (G)				Источник питания для платы (уже подключен)					
6 (G0)				Заземление	е источника питания (уже подключе	ено)		
6	(общий)	-	7	Импульсы,	Импульсы, пропорциональные активной энергии, потребляемой пользователем (импульсы				
(сигнальный)			с внешней г	ілаты)					
6	(общий)	_	8	Импульсы,	Імпульсы, пропорциональные реактивной энергии, потребляемой пользователем (с				
(сигнальный)		платы)*							

Таблица 2.4

*в настоящее время приложение не может обрабатывать импульсы реактивной энергии.

Power analyzer	Анализатор мощности
Common	Общий
Active energy consumed	Потребляемая активная энергия
Energy counter	Счетчик энергии
SIGNAL BOARD inside the	СИГНАЛЬНАЯ ПЛАТА внутри
power meter	измерителя мощности
0.2 fast blow fuse	Быстрый плавкий предохранитель
	0,2 A
Common contact	Общий контакт
Active energy consumed	Потребляемая активная энергия
Reactive energy	Потребляемая реактивная энергия
consumed	
Band	Диапазон
Active energy supplied	Подаваемая активная энергия

ПРИМЕЧАНИЕ. На приведенной выше схеме соединений для обоих типов сигналов активной энергии (с сигнальной платы и с анализатора мощности) используются следующие контакты: номер 6 для общего контакта и номер 7 для сигнала импульса активной энергии. Контакт номер 8, предназначенный для передачи платой значения потребляемой реактивной энергии, в настоящее время не используется.

2.1.7 Аналоговые входы (ХАЗ)

Терминальный блок ХАЗ используется для подключения аналоговых сигналов, поступающих с датчиков (выходы от 4 до 20 мА с электронных преобразователей тока (СТ) и с датчиков NTC и выход от 4 до 20 мА с сумеречного индикатора). В приведенной таблице описаны эти подключения.

Номер контакта	Описание
B1 (CT-) - +Vdc (CT+)	Вход общего потребления 4 – 20 мА с датчика СТ
B2 (CT-) - +Vdc (CT+)	Вход потребления для рефрижерации 4 – 20 мА (необязательный)
B3 (CT-) - +Vdc (CT+)	Вход потребления для кондиционирования воздуха 4 – 20 мА (необязательный)
B4-GND	Датчик 1 CAREL NTC (температуры окружающей среды, рассматриваемой в качестве
	внешней температуры)
B5-GND	Датчик 2 CAREL NTC (температуры воды для 3-направленного вентиля)
B6 - +Vdc	Сигнал датчика сумерек — от 4 до 20 мА
B7-GND	Датчик 3 CAREL NTC (внутренней температуры)

Таблица 2.5

3. Версия «SMALL» контроллера Energy² – ENERGY7060

Эта версия устанавливается в качестве электрической панели на модулях шины 12 +12 DIN. Она отличается от версии «LARGE» тем, что используется более компактный встроенный терминал и применяется программируемый контроллер с более ограниченным набором функций. Эта версия может быть идеальным решением для простого мониторинга энергии, производимого супервизором.

Рис. 3.1

3.1 Терминальный блок версии «Small»

Терминальный блок внутри панели (рис. 3,1) разделен на четыре секции, помеченных различными кодами: **XA** = цифровые выходы

ХА1 = цифровые входы

ХАЗ = аналоговые входы

A2 = преобразователь импульсов мощности, 2 DIN-модуля (PCO208DI00)

Load connections	Подключение нагрузок
Active power impulce	Подключение импульсов
connection	активной мощности
Digital input connection	Подключение цифровых
	входов
Analogue input connection:	Подключение аналоговых
420mA CT and NTC probe	входов: датчики СТ и NTC,
	420 мА

3.1.1 Цифровые выходы (ХА)

Аналогично модели ENERGY2120.

	Номер контакта	Описание
N1-NO1	(нормально открыт)	Подключение нагрузки 1
N2-NO2	(нормально открыт)	Подключение нагрузки 2
N3-NO3	(нормально открыт)	Подключение нагрузки 3
N4-NO4	(нормально открыт)	Подключение нагрузки 4
N5-NO5/ NC5	(переключение)	Общий аварийный сигнал

Таблица 3.1

5 реле, имеющиеся в модели «Small», разделяются на следующие группы: 4 реле с нормально открытыми контактами и одно реле с переключаемыми контактами — все они защищены варисторами 250 В переменного тока.

3.1.2 Электрическое подключение нагрузок к контактам реле NO (нормально открыт)

Аналогично модели Energy 2120, однако используются только реле 1, 2, 3 и 4.

3.1.3 Подключение выхода аварийных сигналов в контактам реле NC (нормально замкнутый)

Аналогично модели Energy 2120, однако используется реле номер 5.

3.1.4 Цифровые входы (ХА1)

Аналогично модели Energy 2120, однако используются только входы ID1, ID 2, ID 5 и ID 6.

3.1.5 Плата конвертера импульсов мощности (А2): подключение электрических сигналов Аналогично модели Energy 2120.

Примечание. Модель «Small» используется только в режиме PULSE (Импульсный)

3.1.6 Аналоговые входы (ХАЗ)

Терминальный блок ХАЗ используется для подключения аналоговых сигналов, поступающих с датчиков (выходы от 4 до 20 мА с электронных преобразователей тока (СТ), с датчиков NTC). В приведенной таблице описаны эти подключения.

Номер контакта	Описание
B1 (CT-) - +Vdc (CT+)	Вход потребления для рефрижерации 4 – 20 мА (необязательный)
B2 (CT-) - +Vdc (CT+)	Вход потребления для кондиционирования воздуха 4 – 20 мА (необязательный)
B3-GND	Датчик 1 CAREL NTC (температуры окружающей среды, рассматриваемой в качестве
	внешней температуры)
B4-GND	Датчик 2 CAREL NTC (внутренней температуры)

Таблица 3.2

ПРИМЕЧАНИЕ. По сравнению с версией «Large» здесь отсутствуют аналоговые входы 4 – 20 мА для измерения общего потребления системой, вход датчика сумерек и вход датчика NTC для температуры воды, используемый для управления 3-направленным вентилем в системе кондиционирования воздуха.

4. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ

4.1 Дисплей

В качестве дисплея используется жидкокристаллический индикатор – 4 строки x 20 столбцов с задней подсветкой. Значения и информация, относящиеся к работе устройства, отображаются в группах экранов. Кнопки, имеющиеся на терминале, могут использоваться для перехода между экранами, как это описано ниже.

x Row0 Home Row1 Row2 Row3]
-------------------------------------	--	---

Если курсор расположен в верхнем левом углу (позиция «Ноте»), при нажатии кнопок 🖤 или 🥙 происходит переход к экрану, соответствующему выбранной ветви.

Если на экране имеются поля для выбора значений, при нажатии кнопки 🤎 курсор перемещается в эти поля. После достижения поля, в котором устанавливается значение, можно изменить значение в пределах ограничений с помощью кнопок 🖗 и 🐶.

Чтобы после установки сохранить требуемое значение, нажмите снова кнопку

Можно также настроить контрастность дисплея, нажав одновременно кнопки 🖤 и 🆤, а затем установив нужную

контрастность с помощью кнопок 🖤 и 🖤

Нажатие одновременно кнопок 🔍, 🕗 и 💜 позволяет пользователю быстро проверить входы и выходы.

4.2 Встроенный терминал

На встроенном терминале имеются 6 кнопок (см. рис. 4.1):

ALARM	PROG	ESC
UP	DOWN	ENTER

Рис. 4.1

C	COOTR	etctb	VIOIII	ими	флнкі	иями

Таблица 4.1

Кнопка	Функция	Описание
205 P 105	ALARM (Аварийный сигнал)	Используется для отображения аварийных сигналов, для ручного сброса этих сигналов и для отключения звукового сигнала. Если кнопка светится (красным светом), по крайней мере, один аварийный сигнал является активным; если мигает светодиодный индикатор, формируется аварийный сигнал с автоматическим сбросом, после которого он перестает быть активным.
Ф или	UP – DOWN (Вверх – Вниз)	Переход между различными экранами, когда курсор располагается в левом верхнем углу экрана. Если курсор находится внутри числового поля, кнопки используются для увеличения или уменьшения соответствующего значения. Если курсор находится в поле выбора, при нажатии на кнопки отображаются доступные варианты.
	ENTER (Ввод)	Используется для перемещения курсора между экранами и для сохранения установленных значений параметров. Когда кнопка светится, блок включен.
Esc	ESC (Отмена)	Используется для отмены выбора, например, для перехода в предыдущее меню из подменю: «User» (Пользователь); «Maintenance» (Обслуживание); «Installer» (Инсталлятор) и «Language» (Язык). При нажатии внутри ветви выбора экрана (S1), приводит к возврату на главный экран (P1).
Prg	PROG (Программа)	При первом нажатии в главном меню обеспечивает доступ к экранам для выбора основных ветвей (S1). При нажатии снова внутри любого экрана приводит к возврату на экраны для выбора основных ветвей (S1), но никогда не открывает главное меню.
Esc L	ON/OFF (Включить/В ыключить)	Включение или выключение блока. Индикатор на кнопке «Enter» указывает статус блока.

4.3 Экраны

В главное меню входят экраны с P1A по P21, которые не защищены паролем и доступны только для отображения. На этих экранах содержится основная информация о блоке и измеряемой мощности.

На главном экране (P1) отображается дата и время, статус блока (ON/OFF), текущая потребляемая мощность и

максимальное ограничение для мощности (контрольная точка). При прокрутке экранов с помощью кнопок отображаются значения счетчиков энергии (полное, месячное и годовое значение), прогнозы потребления за год и за месяц, статус подключенных к цифровым выходам нагрузок, рабочий режим, температура подключенных датчиков и версия приложения.

Этих сведений достаточно для мониторинга общей ситуации функционирования контроллера.

Для доступа к ветвям программного обеспечения нажмите кнопку 🃟

При этом открывается доступ к меню (S1) для выбора четырех различных доступных экранов, в зависимости от уровня: «User» (Пользователь); «Maintenance» (Обслуживание); «Installer» (Инсталлятор) и «Language» (Язык).

Кнопки 🍟 и 🤎 перемещают курсор и позволяют выбрать строку, которая при этом выделяется прописными

символами. Нажатие кнопки 🖤 позволяет перейти к текущей ветви. Для доступа к ветвям конфигурирования блока необходим пароль, за исключение четвертой ветви, используемой для установки языка.

Имеются следующие ветви:

+	+
User set	S1
Maint set	
Installer set	Í
Language	

• Экраны USER (Пользователь): Защищены паролем (0000, изменяемый), на что указывает символ **Ф** в таблице параметров.

Здесь отображаются временные диапазоны (стандартные или специальные), связанные с запуском и выключением управляемых нагрузок, а также время и дата, и часы работы устройств.

Кроме того, возможна установка ограничения максимальной мощности, соответствующего тарифному диапазону, и параметры для последовательной связи и смены пароля.

Экраны MAINTENANCE (Обслуживание): Защищены паролем (0000, изменяемый), на что указывает символ
 в таблице параметров.

Эти экраны используются для установки тарифных диапазонов (сезонных, недельных и ежедневных), в зависимости от тарифного плана по контракту с электрической компанией. Кроме того, могут изменяться смещения температурных датчиков и производиться сброс электросчетчиков.

ВНИМАНИЕ. Экран M22, относящийся к статусу импульса активной и реактивной мощности на входе контроллера Energy², не отображается до тех пор, пока не выбран режим работы PULSE (см. экран I34).

• Экраны INSTALLER (Инсталлятор): Защищены паролем (5555, изменяемый), на что указывает символ 🛛 в таблице параметров.

Эти экраны используются для изменения основных параметров контроллера. Доступ к этим экранам жестко ограничен только тем кругом авторизованного персонала, который хорошо знаком с процедурами настройки.

Этот раздел фактически используется для установки максимальной номинальной мощности системы, режима считывания сигнала, соответствующих регулировок сигналов (амплитуды и длительности импульсов, а для аналоговых сигналов – для калибровки сигнала, преобразуемого в мощность в кВт), максимальной номинальной мощности управляемых устройств и приоритетности подключения и отключения нагрузок в зависимости от времени.

• Экраны LANGUAGE (Язык): Не защищены паролем, на что указывает символ **®** в таблице параметров. Эти экраны используются для установки языка (итальянский/английский) при отображении на экранах.

4.3.1 Список экранов

Ниже приводится список экранов, отображаемых на дисплее.

Столбцы в этой таблице, за исключением первого столбца, в котором указаны экраны главного меню, отражают

циклы (петли) экранов, доступных при нажатии кнопки 🥙. Эти циклы разделены на ветви: «USER» (Пользователь); «MAINTENANCE» (Обслуживание); «INSTALLER» (Инсталлятор) и «LANGUAGE» (Язык). После нажатия в главном

меню кнопки 🏧 отображается первый экран S1; затем надо воспользоваться кнопками 🍟 и 🖤, чтобы выбрать

нужную ветвь. Нажатие кнопки 🖤 позволяет открыть экраны, соответствующие выбранной ветви. Символ PSW указывает на то, что необходимо ввести пароль.

Примечание. Экраны выделенные серым фоном не представлены в ПО для версии «Small».

ГЛАВНОЕ МЕНЮ	«User»	«Maintenance»	«Installer»	«Language
	(Пользователь)	(Обслуживание)	(Инсталлятор)	» (Язык) 🚯
	0	•	A	<i>"</i> (2102, C
D1				1.4
PZ	UL	ML	IL	
P3	«Config. Loads»	«Set rate bands»	«Config. Loads»	
	(Конфигурировани	(Установка	(Конфигурирова	
	е нагрузок)	тарифных	ние нагрузок)	
		лиапазонов)		
D4	111	M1	11	
P4		MO	10	
P0	02	M2	12	
P6	03	M3	13	
P7	U4	M4	14	
P8	U5	M5	15	
P9	U6	M6	16	
P10	U7	M7	17	
P11	118	M8	18	
D12	00	MO	10	
P12	09	1019	19	
P13	010	M10	110	
P14	U11	M11	111	
P15	U12	M12	112	
P16	U13	M13	113	
P17	1113	M14	114	1
D18	1114	M15	115	
		CT IVI	110	
P19	015	IVI16	116	
P20	U16	«Probe offsets»	117	
		(Смещения		
		датчиков)		
P21	U17	M17	118	
	1118	"Reset counters»	110	
	010		113	
	1140	(Сорос счетчиков)	100	
	019	M18	120	
	U20	M19	121	
	U21	«Aux DI and pwd»	122	
		(Вспомог. DI и		
		пароль)		
	1122	M22	123	
	1122	M22	120	
	023	10123	124	
	024		125	
	U25		126	
	U26		127	
	U27		128	
	U28		129	
	1129		130	
	1120		100	
			131	
	«Set time bands»		132	
	(Установка			
	временных			
	диапазонов)			
	U31		133	
	U32		«Power	
	-		settings»	
			(Установки	
	1100			
 	033		154	
	034		135	
	U35		136	
	U36		137	
	U37		138	
	U38		139	
	1130		140	
	1140	l	144	
 	040		141	
L	U41		142	
	U42		«Set alarms»	
			Установка	
			аварийных	
			симгналов)	
	U43		143	
			144	
+			144	
<u></u>	045		145	
	U46		146	
	«Set point»		147	
	(Контрольная			

точка)		
U47	148	
U48	149	
U49	150	
U50	«Change	
	password»	
	(Смена пароля)	
U51	151	
U52		
U53		
U54		
U55		
U56		
«Set		
communication»		
(Настройка связи)		
U57		
U58		
U59		

Таблица 4.2

5. ПОДКЛЮЧЕНИЕ К СИСТЕМЕ

Контроллер может быть подключен к питающей сети различными способами:

Если имеется плата эмиттера сигналов (установленная на электроизмеритель, поставленный электрической компанией), может быть установлено подключение к этой плате и непосредственное получение данных о потреблении.

Если сигнал недоступен, можно установить трехфазный анализатор мощности, подающий выходной сигнал о потреблении энергии в виде импульсов (компания CAREL рекомендует и поставляет специальную модель, см. доступные опции).

Если трехфазная система является сбалансированной, можно установить преобразователь тока на одну из фаз, чтобы измерять ток — далее это значение конвертируется программным обеспечением с целью управления энергопотреблением.

5.1 Связь эмиттера сигналов с контроллером Energy²

Если имеется плата эмиттера сигналов, установленная электрической компанией по заявке пользователя, контроллер Energy² может взаимодействовать непосредственно с измерителем, что позволяет считывать в реальном времени выходные сигналы, соответствующие активной энергии, текущее значение тарифного диапазона и длительности. При взаимодействии с платой обеспечивается синхронизация пиков потребления с измерителем мощности.

Сигнальная плата устанавливается внутри корпуса, а соответствующие контакты доступны снаружи. Пользователю следует установить быстрый плавкий предохранитель на ток менее 0,2 А, чтобы предотвратить в случае избыточного тока повреждение предохранителя, имеющегося внутри измерителя

На рисунке показан пример организации связи между эмиттером сигналов и контроллером Energy²:

Рис. 5.1

Контроллер Energy² совместим с техническими спецификациями плат эмиттера сигналов: Импульсы рассматриваются контроллером в качестве унифицированных (см. раздел «Технические спецификации сигнальной платы») для каждого киловатт-часа активной энергии. Они идентифицируются и преобразуются в текущий тарифный диапазон. Производится также синхронизация с временным периодом (15, 30, 45 и 60 минут) для измерения потребления на основе поступающих сигналов.

Ниже приведены технические спецификации для двух типов плат эмиттера сигналов.

ілата і SK	A					
Техническ	кие спецификации сигнально	й платы	Код ID диапазона времени оценки *			
Импульс	Константа активной энергии	10000 имп./кВт-ч	Тарифные соответствующие 45/90	диапазоны, положению CIP		
Ы	Константа индуктивной реактивной энергии	10000 имп./квар-ч	Зимний период	Летний период	Контакт RL1	Контакт RL2
Энергии Длительность импульса		80 мс	С октября по март	С апреля по сентябрь (август только F4)		
	Максимальное напряжение	500 В постоянного тока или пиковое переменного тока	F1 – Часы пиковой нагрузки	F2 – Часы высокой нагрузки	Закрыт	Открыт
	Максимальный ток	1 A	F2 – Часы высокой нагрузки	F3 – Часы средней нагрузки	Открыт	Закрыт
Контакт ы	Переключаемая мощность	50 вольт-ампер	F4 – Часы отсутствия нагрузки	F4 – Часы отсутствия нагрузки	Открыт	Открыт
	Напряжение изоляции 2000 переменного тока		* Код соответству	ет терминальному	блоку зака	азчика на
	Встроенный плавкий предохранитель	0,2 A с задержкой срабатывания	сайте специалисто	в электрической комп	ании	
					Т	аблица 5.

Плата Siemens

.

Технические спецификации сигнальной платы			Код ID диапазона времени оценки *			
	Константа активной энергии	8 000 имп./кВт-ч	Тарифные соответствующие 45/90	диапазоны, положению CIP		
Импульс ы	Константа индуктивной реактивной энергии	8 000 имп./квар-ч	Зимний период	Летний период	Контакт	Контакт ВI 2
энергии	Длительность импульса	80 мс	С октября по март	С апреля по сентябрь (только в августе F4)		
	Максимальное напряжение	500 В постоянного тока или пиковое переменного тока	F1 – Часы пиковой нагрузки	F2 – Часы высокой нагрузки	Закрыт	Открыт
	Максимальный ток	1 A	F2 – Часы высокой нагрузки	F3 – Часы средней нагрузки	Открыт	Закрыт
Контакт ы	Переключаемая мощность	50 вольт-ампер	F4 – Часы отсутствия нагрузки	F4 – Часы отсутствия нагрузки	Открыт	Открыт
	Напряжение изоляции	2000 В переменного тока	* Код соответству	ет терминальному	блоку зака	азчика на
	Встроенный плавкий предохранитель	0,2 A с задержкой срабатывания	сайте специалисто	в электрической комп	ании	

Таблица 5.2

5.1.1 Потребляемая активная энергия

Чтобы получить с платы измерение активной энергии, подключите кабели в соответствии с рис. 5.1. Затем необходимо знать характеристики выходного импульсного сигнала, поступающего с платы (измерителя линии питания).

В технических спецификациях двух моделей плат, приведенных выше (табл. 5.1 и 5.2) это значение указано в графе «Константа активной энергии»: В первом случае это 8000 имп./кВт-ч, а во втором случае – 10000 имп./кВт-ч.

Это число соответствует максимальному количеству импульсов, требуемому, чтобы потребление на счетчике электроэнергии составляло 1 кВт-ч.

Один кВт-ч, потребленный на измерителе, это не реальное, а условное значение, которое способствует сокращению потока данных.

Каждый измеритель, фактически, характеризуется значением, называемым «постоянным множителем» (SHUNT), который зависит от модели измерителя, например, 200, 400, 800, 1200 и т. д.

Полученное с измерителя значение необходимо умножить на эту величину, чтобы получить эффективное потребление.

Поэтому, если измеритель показывает значение 1 кВт-ч, при умножении этого значения на постоянный множитель (SHUNT) будет получена соответственно величина потребления 200, 400, 800, 1200 и т. д. кВт-ч.

Примечание Чтобы выяснить значение коэффициента SHUNT, свяжитесь с электрической компанией или производителем измерителя.

Зная число импульсов на один кВт-ч и значение коэффициента SHUNT, можно установить точное значение «веса импульса» на экране I 34 (цикл «Installer» / установка мощности) контроллера Energy².

Кроме того, необходимо учитывать, что функцией платы А2 является уменьшение потока импульсов на входе контроллера Energy². Фактически, этот преобразователь подсчитывает 8 импульсов на входе и формирует 1 импульс на выходе.

Чтобы правильно вычислить вес импульса (экран I34, рис. 5.1.1.2), необходимо учитывать этот коэффициент деления (отношение 8:1, как показано на рисунке 5.2

Следующая формула упрощает вычисление, учитывая значение коэффициента SHUNT и константы активной энергии (см. технические спецификации платы):

Вес импульса = 8000 х	. <u>SHUNT</u> константа активной энергии)
Вес импульса = 8000 x	. <u>SHUNT</u> константа активной энергии)

Пример 1 относится к техническим спецификациям сигнальной платы, представленной в таблице 5.1

Пример 2 относится к техническим спецификациям сигнальной платы, представленной в баблице 5.2

1 имп. = 400 Вт-ч — → Это правильное значение, которое нужно установить на экране I34 (рис. 5.3) для параметра «Вес импульса»

5.1.2 Тарифные диапазоны по контрактам

Временные диапазоны для контрактов, которые имеют отличающиеся временные интервалы, являются, по существу, периодами дня и месяца, когда различается стоимость электроэнергии, в зависимости от текущих требований в конкретной стране.

Используется деление на четыре тарифных диапазона. F1 (часы пиковой нагрузки), F2 (часы высокой нагрузки), F3 (часы средней нагрузки) и F4 (часы отсутствия нагрузки).

Ниже в таблице 5.3 показан тарифный план на целый год, разделенный на четыре тарифных диапазона.

В Италии, например, все электрические компании, как частные, так и государственные, должны следовать указанному тарифному плану, который составляется на базе статистики национального потребления за предыдущие годы.

Таблица 5.3

Контроллер Energy² может автоматически применять текущий тарифный диапазон и для каждого из диапазонов устанавливать максимальное ограничение доступной мощности, для того чтобы оптимизировать потребление с учетом тех временных интервалов, когда стоимость электроэнергии ниже. Если на сигнальной плате имеются два выходных контакта RL1 и RL2, соответствующие изменению текущего тарифного диапазона, подключите кабели к цифровым входам ID 1 и ID2 на контроллере Energy², как это показано на рис. 5.1.1

454

1,848

1.084

23 die - 31 die

1 gan - 31 die

Затем откройте экраны ПО и на экране I37 (рис. 5.4) активируйте тарифные диапазоны для DI (цифрового входа):

509 509,0

1 apr - 31 do 1 gen - 31 - 6c

461

1.263

Комбинация этих двух цифровых входов позволяет контроллеру автоматически адаптироваться к текущему тарифному диапазону в зависимости от месяца и сезона. Комбинации контактов:

KOHTAKT	RL1	Контакт RL2 (DI 2)	Экран М21	CE3OH 0	CE3OH 1	CE3OH 2	Суббота/воскресенье/пр
(DI 1)							аздник
Закрыт		Закрыт	0-0	F4	F4	F4	F4
Закрыт		Открыт	0-1	F4	F2	F3	F4
Открыт		Закрыт	1-0	F4	F1	F2	F4
Открыт		Открыт	1-1	F4	-	-	F4

Таблица 5.4

Затем на экранах U47 и U48 для каждого тарифного диапазона (F1, F2, F3, F4) следует установить максимальный лимит мощности, который не должен превышаться:

Рис. 5.6

В зависимости от комбинации контактов сигналов, поступающих с сигнальной платы, контроллер Energy² изменяет максимальный лимит мощности, доступный для тарифного диапазона, для того чтобы оптимизировать потребление в зависимости от требований.

Возможность управления четырьмя различными точками наборов мощностей, фактически, позволяет производить задержку или откладывать на будущее отключение устройств, в зависимости от входной мощности. Текущий тарифный диапазон, определяемый параметром «Максимальная мощность» (предварительно установленный на экранах U47 и U48), отображается на главном экране программного обеспечения:

Рис. 5.7

Значение, выделенное красным цветом, на экране Р1 будет автоматически изменено на основе комбинации двух контактов RL1 и RL2, которая указана в таблице 5.4. Это приводит к тому, что значение, соответствующее максимальной текущей мощности в текущем диапазоне Fx, устанавливается на экранах U47 и U48.

И наоборот, если на плате не используются контакты RL1 и RL2 или контроллер Energy² подключен к другому устройству считывания мощности, для параметра на экране I37 следует установить значение «NO» (Нет).

Функции цифровых входов ID 1 и ID2 на контроллере Energy ² , используемые для изменения тарифного	I37 Fasce tartiffarie DI SLNO ↓ ↑ ↓
диапазона отключаются. Индикация пикового часового тарифного диапазона (с платы эмиттера сигналов)	Рис. 5.8

Тарифные диапазоны могут быть установлены с помощью ПО путем задания значения «NO» на экране I37, что соответствует выбору «RATE BANDS» (Тарифных диапазонов) определенных программой. Ниже приводится описание этой процедуры.

• Прежде всего убедитесь, что на экране U31 (см. цикл «User» (Пользователь) / «Set time bands» (Установка временных диапазонов)) правильно указаны дата, время и день недели.

 Затем укажите сезонные диапазоны, назначая значения от 0 до 2 каждому месяцу года (0 = часы без нагрузки; 1 = зимний период; 2 = летний период). Эта конфигурация является полностью универсальной и разработана специально для того, чтобы имелась возможность адаптации тарифного плана в любой стране..

Рис. 5.12

В тех месяцах, которые сконфигурированы со значением 0, будет только один временной диапазон, то есть тот, который соответствует периоду отсутствия нагрузки с использованием самой низкой стоимости. С другой стороны, в тех месяцах, для которых задано значение 1, будет использоваться временной диапазон для зимнего периода, а если для месяца указано значение 2 — для летнего периода.

 На этом этапе необходимо также сконфигурировать недельные диапазоны, то есть указать дни недели, ассоциируемые в различными тарифными диапазонами в зависимости от месяца и сезона (0, 1 или 2). Для каждого дня недели указываются значения «нагрузка» (NV) или «нет нагрузки» (V) (по итальянским стандартам полными днями считаются будние дни).

ПРИМЕЧАНИЕ. Указание для дня недели значения «V» означает его приписывание к характеристикам сезона 0. Однако выбор значения «NV»означает приписывание характеристик для сезона 1, если в одном из его месяцев установлено значение 1, или это указывает на приписывание характеристик для сезона 2, если для одного из месяцев указано значение 2.

Если, например, календарь указывает месяц январь, который прежде был отнесен к сезону 1, а днем недели является понедельник, при установке значения «NV» это будет соответствовать диапазонам F1, F2, F3 и F4, относящимся к сезону 1.

 В заключение установите значения времен для диапазонов F1, F2, F3, F4, соответствующих сезонам 0, 1 и 2. Чтобы это сделать, перейдите на экран M4 и последующие экраны и измените времена для каждого диапазона:

5.2 Связь анализатора мощности питающей сети с контроллером Energy² Ниже приводится описание модели анализатора мощности питающей сети, который указан в опциях и был протестирован компанией CAREL.

Анализатор мощности питающей сети может производить расчет потребленной мощности путем измерения всех необходимых параметров: напряжения, силы тока, сдвига и частоты.

Перед подключением анализатора мощности питающей сети к контроллеру Energy² проверьте подключение датчика СТ и подключения к линии питания.

На линии питания трехфазной системы необходимо установить три преобразователя тока. Преобразователи тока должны быть выбраны на основе максимального потребления системы с соответствующим масштабированием.

В зависимости от калибровки параметра CT, установленной на приборе (см. инструкцию соответствующего прибора) импульс энергии на выходе анализатора мощности питающей сети имеет различный коэффициент в терминах киловатт-часов.

Коэффициент выходного импульса является важнейшим значением, которое требуется также установить в ПО контроллера Energy² на экране I37, как это показано на рисунке 5.3.

Как это показано на рис. 5.15, выходной импульс с анализатора мощности питающей сети подается непосредственно на плату A2 преобразователя импульсов мощности. Следует помнить, что преобразователь A2 подсчитывает восемь импульсов на входе и формирует один выходной импульс, который соответствует «весу» в ватт-часах, который в восемь раз больше, чем у выходного импульса анализатора мощности питающей сети. Если выходной импульс анализатора мощности питающей сети как у выходного импульса в восемь раз больше, чем у выходного импульса анализатора мощности питающей сети.

Если выходной импульс анализатора мощности питающей сети имеет вес 100 вт-ч и анализатор подключается к конвертеру импульсов А2, каждый импульс, подсчитываемый контроллером Energy² будет соответствовать восьми импульсам, поступающим с анализатора мощности питающей сети. В примере 1 один импульс имеет вес 800 Вт-ч и эта величина вводится на экране I37, чтобы выполнить правильную калибровку контроллера Energy².

5.3 Связь преобразователей тока (СТ) с контроллером Energy² (только при сбалансированной нагрузке)

Если сигнальная плата недоступна и не может быть установлен анализатор мощности питающей сети, возможно непосредственное подключение преобразователей тока (СТ) к трехфазной линии для получения выходного сигнала от 4 до 20 мА. Контроллер Energy² может интерпретировать эти сигналы путем измерения входного тока системы и соответствующего вычисления входной мощности.

ПРИМЕЧАНИЕ. Рекомендуется применять этот тип подключения в том случае, когда трехфазная система является сбалансированной.

Рис. 5.16

На схеме показано, что для каждой ветви требуется только один преобразователь тока: один преобразователь устанавливается на трехфазной системе (если она сбалансирована), а два других преобразователя подключаются к линиям питания для охлаждения и кондиционирования воздуха (если они имеются).

ВНИМАНИЕ. На модели «Small» отсутствует аналоговый вход 4 – 20 мА для считывания полной мощности системы.

В модели «Large» используется вход В1 и, в зависимости от того, имеется ли внешний источник питания для преобразователя тока, в качестве второго входа используется GND (Заземление) или +Vdc.

Чтобы активировать считывание с помощью электронного преобразователя тока (в модели «Large»), сначала требуется включить соответствующий аналоговый вход, установив режим ANALOG (Аналоговый) на экране I34, в группе «Установки мощности» (цикл «Installer»), как это показано на рис. 5.17.

Рис. 5.17

Тогда отключение устройств в случае превышения мощности производится на базе считывания этого сигнала. Два других преобразователя тока могут быть установлены на вторичных линиях для мониторинга потребления системами охлаждения и кондиционирования воздуха. <u>На основе этих двух сигналов не выполняются какие-либо</u> <u>управляющие действия — они используются просто для мониторинга энергопотребления, которое отображается на</u> <u>графиках программного модуля контроллера Energy.</u>

5.3.1 Калибровка электронных преобразователей тока

Для правильного считывания сигналов с этих устройств на экранах I38, I40 и I41 необходимо настроить соответствующую калибровку сигнала 4 – 20 мА в зависимости от особенностей системы (см. приведенный ниже пример).

Экран, показанный на рис. 5.18, соответствует калибровке преобразователя тока для считывания общей мощности системы (только для версии «Large»).

Значение мощности, выраженное в единицах кВт, которое в точности соответствует выходному сигналу преобразователя тока, необходимо задать с помощью установки для минимального (4 мА) и максимального (20 мА) сигналов.

Для правильной калибровки этих двух значений необходимо учитывать следующее:

- напряжение конкретной фазы (вольт) по отношению к связанному с ним напряжению фаза-нейтральный провод или фаза-фаза (топология «звезда» или «дельта»),
- максимальное масштабирование для установленного преобразователя тока (амперы), то есть, максимальный ток, который может измеряться этим преобразователем;
- сдвиг (соѕф).

Когда известны эти три величины и фазы рассматриваются как сбалансированные, можно определить минимальное и максимальное значение мощности, соответствующее мощности отдельной фазы:

$$P = V \times I \times \cos \varphi$$

(мощность одной фазы)

На этом этане, в зависимости от напряжения V:

Замените V в формуле значением 400 вольт, рассматривая напряжение связи фаза-фаза, и, чтобы определить мощность трехфазной системы, это значение необходимо умножить на √3 :

$$P = V \times I \times \cos \varphi \times \sqrt{3}$$

 Если же значение V в формуле заменяется значением 230 вольт, т. е., рассматривается напряжение связи фаза-нейтральный провод, значение необходимо умножить на 3:

$$P = V \times I \times \cos \varphi \times 3$$

ПРИМЕЧАНИЕ. Значение «I» в формуле должно соответствовать максимальному току для масштабирования (в амперах) для установленного преобразователя тока.

Пример:

Конечным значением шкалы преобразователя тока является значение 500 A, напряжение между фазой и нейтральным проводом составляет 230 B, в сдвиг (соs φ) равен 0,9.

 $P = \frac{230 \ V \times 500 \ A \times 0.9}{1000} \times 3$ $P = \frac{310500}{1000}$ (деление на 1000, чтобы преобразовать значение из единиц Вт в кВт) P = 310.5

Это значение можно округлить до 310 кВт.

Если для поля, соответствующего сигналу 4 мА, устанавливается значение 0 кВт, это соответствует отсутствию потребляемой мощности, когда система отключена. Для поля, соответствующего сигналу 20 мА, должно быть установлено значение 310 кВт, эквивалентное максимальному выходу, который может быть измерен с помощью преобразователя тока.

Рис. 5.19

6. Связь контроллера Energy² с системой супервизора

Контроллер Energy² совместим с системой супервизора PlantVisor компании Carel через последовательный выход RS 485.

В процессе конфигурирования на экране «User» U57 укажите протокол, скорость связи и адрес сети. После этого, при необходимости, параметры блока могут корректироваться оператором непосредственно из системы супервизора.

Рис. 5.20

Контроллер Energy² подключается к конвертеру RS485 с помощью экранированной витой пары AWG20/22, экран которой подключается к заземлению.

Рис. 5.21

Важные примечания относительно подключения:

- 1. необходимо соблюдать полярность проводов (TX+ и TX-)
- 2. максимальная длина сети не должна превышать 1000 м; ветви не должны превышать 5 м;
- 3. не допускается разветвление линии (подключения типа «звезда»);
- 4. все устройства в сети должны питаться от собственных автономных источников питания, вторичные обмотки которых не должны быть заземлены;
- 5. установите резистор 1/4 Вт, 120 Ω, поставляемый компанией CAREL, между контактами TX+ и TX- на самом удаленном от преобразователя RS485 контакте;
- 6. убедитесь в том, что сетевые кабели не проложены поблизости от сетевых кабелей или, что еще хуже, в каналах, совмещенных с сетевыми кабелями.

7. ПРОГРАММА

7.1 Управление электроэнергией

Программа оценивает на основе полученных значений энергию, потребленную за выбранный базовый период (15, 30, 45 или 60 минут — устанавливается на экране I35) и, как результат, среднюю мощность на интервале (вычисляемую как отношение потребленной энергии и длительности цикла). Если вычисленное значение мощности выше максимальной величины, установленной для этого времени суток (точки биллинга), программа отключает ряд нагрузок, чтобы снизить потребление мощности до значения, которое ниже граничного.

Программа может осуществлять управление на основе четырех различных типов точек биллинга, а также отображать статус управляемых нагрузок (Вкл., Выкл.), максимальную мощность, достигнутую с начала установленного периода биллинга (месяц или год), и энергию, потребленную с начала периода.

Кроме того, программа отображает оценки потребления энергии до конца установленного периода биллинга (месяца или года).

Контроллер Energy² может получать сведения о потребленной энергии с помощью трех методов:

- с электронной платы, подключенной к измерителю мощности (в виде импульсов);
- с анализатора мощности питающей сети (в форме импульсов)
- непосредственным измерением на входе мощности посредством преобразователя тока (от 4 до 20 мА).

7.2 Управление приоритетами и вспомогательные значения для энергии

Программа позволяет управлять до 15 нагрузками при использовании версии «Large» и до 4 нагрузок, если применяется версия «Small». Отключение нагрузок производится в порядке их приоритетности, для того чтобы поддерживать входную мощность на уровне ниже установленной точки. Таким образом, отключение нагрузок осуществляется в следующей последовательности: первой отключается нагрузка с приоритетом 1, а в последнюю очередь отключается нагрузка, имеющая приоритет 15 (в модели «Large») или 4 (в версии «Small»).

Подключение ранее отключенных нагрузок производится в обратном порядке. Первой перезапускается нагрузка с приоритетом 15 (в версии «Large») или 4 (в версии «Small»), а в последнюю очередь снова подключается нагрузка с приоритетностью 1. Эта процедура управляется с помощью алгоритма, который снова подключает нагрузки таким образом, чтобы при этом не превышалась установленная точка максимального потребления (а также в соответствии с временами работы каждой из нагрузок). Значения энергии определяются путем назначения номинальных мощностей нагрузкам, которые рассматриваются в качестве энергии, которая будет потреблена до окончания расчетного цикла (произведение мощности нагрузки и оставшегося времени цикла).

7.3 Временные интервалы

Операции, выполняемые контроллером Energy² в отношении подключенных устройств, базируются на установленных временных интервалах.

Некоторые из них гарантируют в рамках возможностей характеристики подключенных нагрузок.

Используются следующие временные интервалы:

Минимальное время отключения для устройства (Minimum OFF) – рис. 7.1;

Максимальное время отключения для устройства (Maximum OFF) – рис. 7.2;

Минимальное время включения для устройства (Minimum On) – рис. 7.3;

Это то минимальное время, в течение которого нагрузка должна оставаться отключенной даже в том случае, когда она имеет наивысший приоритет.

Рис. 7.2

Это максимальное время отключения для нагрузки. После истечения этого времени с момента отключения нагрузки сигнал активации посылается независимо от приоритета устройства и той энергии, которая будет потребляться по завершении цикла, даже если величина этой энергии превысит значение квоты и, соответственно, ограничение по мощности.

Ì		Минимальное время включения
	Minimum ON	

Рис. 7.3

Это минимальное время нахождения нагрузки во включенном состоянии. В течение этого времени нельзя производить какие-либо действия с нагрузкой.

8. ИНИЦИАЛИЗАЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Следующие серии операций используются для инициализации системы и поэтому с данным разделом следует ознакомиться только после прочтения раздела «Программа».

Примечание. Систему следует включать только после полного завершения программирования контроллера.

Ниже приводится список экранов и дается описание имеющихся полей. В правом верхнем углу каждого экрана отображается его имя.

8.1 Экраны главного меню

+-----+ |00/00/00 00:00 P1| |State OFF | |Abs. Power. 00000 kW| |Limit Power 00000 kW|

При запуске системы на первом экране отображается дата и время (которые необходимо предварительно правильно установить на соответствующем экране), статус системы, текущая входная мощность и максимальное ограничение по мощности.

Одновременное нажатие кнопок 🥗 и 💜 на начальном экране изменяет состояние системы (Вкл./Выкл.).

Чтобы вернуться на экран Р1 и в соответствующий цикл, нажмите при отображении любого экрана кнопку 🤎

Чтобы перейти на другие экраны главного меню, воспользуйтесь кнопками 🎱 и 🕗

+-----+ | P2| | Refrigeration | | consumption | 00000kW | +-----+

На этом экране отображается текущее потребление (в кВт) для секции охлаждения.

Отображаемое значение изменяется в зависимости от калибровки электронного преобразователя тока (с выходом 4 – 20 мА) на экране I40, который показывает значение на аналоговом входе, определенном на контроллере Energy² для потребления системой рефрижерации (см. терминальный блок аналоговых входов для моделей «Large» и «Small»).

Этот экран доступен только в том случае, когда максимальное ограничение для рефрижерации, установленное на экране I39, превышает 0 кВт-ч.

Этот экран, так же как и другие экраны этого цикла, используется только для отображения.

На этом экране отображается текущее потребление (в кВт) для секции кондиционирования воздуха. Как и выше, но относится к экрану I41

| P4| | Total energy | | counter | | 000000000kWh |

Счетчик полной энергии в единицах кВт-ч, указывающий общее потребление, измеренное электронным преобразователем тока в режиме ANALOG (Аналоговый) (аналоговый вход В1 имеется только в модели «Large»), или полученное от анализатора мощности питающей сети в режиме PULSE (Импульсный) на цифровом входе ID3 (см. экран I34).

+-----+ P5| | Refrigeration | | energy counter | | 000000000kWh

Счетчик энергии в единицах кВт-ч, отражающий потребление секции рефрижерации, измеренное посредством электронного преобразователя тока с использованием выхода 4 – 20 мА (см. терминальный блок аналоговых входов на моделях «Large» и «Small»).

Этот экран доступен только в том случае, когда максимальное ограничение мощности для рефрижерации, установленное на экране I39 в цикле «Installer», превышает 0 кВт-ч.

-----+ P6| Air conditioning | energy counter | 0000000000kWh

Аналогично предыдущему экрану, но отражается потребление системой кондиционирования воздуха.

P7| Annual energy | counter | 0000000000kWh

+

Годовое потребление энергии.

---+

+-----+ | P8| | Monthly energy | | counter | | 000000000kWh +-----+

Месячное потребление энергии.

Годовой и месячный счетчики энергии сбрасываются автоматически после завершения соответствующего периода (года/месяца) или могут быть сброшены вручную на экране М18.

| Max absorbed P9| | power | |Curr. year 00000kW | |Prev. year 00000kW | +-----+ +-----+

+----+

| Max absorbed P10| | power | |Curr. month 00000kW | |Prev. month 00000kW | +-----+

Базируясь на полученных данных и вычисленном значении среднего дневного потребления, контроллер Energy² может отобразить фактическое значение потребленной мощности в текущем году или месяце, а также показать значения для предыдущего года или месяца.

Эти значения используются для составления оптимального контракта на электроэнергию с электрической компанией.

+-----+ | P11| | Foreseen yearly | | energy consumption | | 0000000000kWh | +------+

| P12| | Foreseen monthly | | energy consumption | | 000000000kWh | +-------+

Контроллер Energy² может вычислить прогноз потребления энергии в текущем году или месяце, базируясь на уже полученных данных, а затем может автоматически обновлять эту оценку на основе ежедневных данных.

|Loads state P13| |1:OFF 4:OFF | |2:OFF 5:OFF | |3:OFF 6:OFF | +------+

+----+

+----+

Статус цифровых выходов: 1-6 модели «Large»; 1-4 модели «Small». Значение «ON» указывает на то, что на контакт реле подается питание, а значение «OFF» показывает отсутствие питания.

|Loads state P14| |7:OFF 10:OFF 13:OFF| |8:OFF 11:OFF 14:OFF| |9:OFF 12:OFF 15:OFF|

Статус цифровых выходов 7-15. Примечание. Этот экран не отображается на модели «Small»

Указывает на работу вне временных диапазонов. Включение и отключение производится в соответствии со статусом цифрового входа ID6.

Если на экранах конфигурирования нагрузок (см. цикл «User»/»Config. Loads»/экраны U2, U4, U6, U8 и т. д.) выбрана работа без временных диапазонов, на этом экране будет отображаться статус цифрового входа 6, если он активирован: «YES» = нагрузка активирована; «NO» = нагрузка отключена.

+----+

Указывает, имеется ли в системе световой индикатор. Отображается только в том случае, если на экране I32 в цикле «Installer» задан сумеречный переключатель. Включение и отключение производится в соответствии со статусом цифрового входа ID7.

|Ambient temperat.P17| | 00.0°C | |Internal temperat. | | 00.0°C | +------+

Отображается температура, измеренная датчиками, установленными во внешней среде (аналоговый вход В4 в модели «Large» и вход В3 в модели «Small») и внутри системы (аналоговый вход В7 в модели «Large» и вход «В4» в модели «Small»).

+-----+ | P18| |Water Temperature | | 00.0°C | | |

+-----+Температура воды, измеренная датчиком, подключенным к аналоговому входу В5. Этот датчик используется для управления 3-направленным вентилем (см. соответствующий параграф в главе «Программа»).

P19| | Light intensity | | 000 (0-100) | | |

Отображает с использованием шкалы 0 – 100 интенсивность освещения от датчика сумеречного переключения, который подключается к аналоговому входу В6. Этот экран отображается только в том случае, когда на экране I32 цикла «Installer» задано применение сумеречного переключателя 4 – 20 мА.

+-----+ P20| | 3Way valve | | position 000.0% | | |

Отображается степень открытия (в процентах) 3-направленного вентиля, подключенного к аналоговому выходу Y1-0. Степень открытия этого вентиля соответствует температуре воды (см. соответствующий параграф в главе «Программа»).

| Carel S.p.A P21| | Brugine (PD) | | PCO2Energy | |Ver.0.0 00/00/00|

+----+

Информация о версии и дате выпуска программного обеспечения.

Примечание. Экраны Р16, Р18, Р19 и Р20 отсутствуют в версии «Small», так как в ней не поддерживаются соответствующие функции.

8.2 Раздел «Installer» (Инсталлятор)

Перед программированием или в том случае, когда требуется восстановить значения параметров по умолчанию, необходимо выполнить сброс буферной памяти (см. описание экрана I33).

После ручной инициализации установщик должен выполнить ряд операций, чтобы настроить основные функции контроллера и гарантировать правильное функционирование блока:

Отключите систему, если она уже не выключена, нажав одновременно кнопки "и" и ". Установите тип ввода для отсчетов мощности (PULSE или ANALOG) в соответствии с установленной конфигурацией системы и установите то значение максимального лимита мощности системы, которое определено в контракте.

Произведите калибровку преобразователя тока для режима ANALOG или для сигнальной платы, если считывание мощности выполняется в режиме PULSE по сигналам с анализатора мощности питающей линии.

Для каждой активированной нагрузки следует выполнить следующие настройки: задание приоритета, минимального времени отключения, минимального времени включения и максимального времени отключения.

+	+
User set	S1
Maint set	1
Installer set	Í
Language	
+	+

Этот экран доступен при нажатии кнопки 🆤 при отображении любого экрана.

Кнопка 🥙 используется для выбора одного из четырех полей экрана, а при нажатии кнопки 🖤 осуществляется переход к соответствующему циклу.

Ниже приводится описание тех циклов, которые доступны с этого экрана. Рекомендуется начинать работу с цикла «Installer» (Инсталлятор):

Для этого цикла используется пароль 5555 — введите этот пароль и подтвердите его, нажав кнопку Открывается меню цикла «Installer».

После первого доступа к системе рекомендуется изменить пароль.

Τ	F
Load Config.	IL
Power set	1
Alarms	
Pwd change	
+	F

Кнопка ^чиспользуется для выбора одного из четырех полей экрана, а при нажатии кнопки ^чосуществляется переход к соответствующему циклу.

8.2.1 Цикл «Power settings» (Установки мощности)

Сначала внутри цикла «Installer» необходимо настроить те параметры, которые соответствуют номинальным мощностям системы — цикл «Power settings» (Установки мощности).

Модель «Large»

|Power I PULSE |34| |Max plant power | | 00000 kW | |weight pulse 000 Wh |

+----+

+-----+ Этот экран используется для выбора входа отсчетов мощности – между режимами ANALOG (Аналоговый) и PULSE

(Импульсный). Экран имеется только на контроллере версии «Large». Режимы:

ANALOG = передача аналогового сигнала 4 – 20 мА с электронных преобразователей тока;

PULSE = использование внешнего сигнала с платы эмиттера сигналов или от анализатора мощности питающей сети, который формирует импульсы энергии.

При выборе значения PULSE в поле на последней строке отображается вес импульса в единицах Вт-ч — необходимо установить этот параметр в соответствии с характеристикой производителя платы или параметрами технической спецификации анализатора мощности питающей сети.

На второй строке устанавливается значение максимальной мощности для системы.

| I34| |Max plant power | | 00000 kW | |weight pulse 000 Wh |

Модель «Small»

В контроллере модели «Small» не производится установка режима ANALOG или PULSE, так как для этой версии отсутствует возможность измерения мощности с помощью преобразователя тока — используется только импульсный вход, поэтому режим PULSE устанавливается автоматически.

Этот экран используется для задания времени расчета пиков потребления: 15, 30, 45 или 60 минут.

Пики потребления вычисляются на основе установленного времени и устройства отключаются, когда прогноз потребления, рассчитанный на базе выбранного временного интервала, превышает граничный лимит мощности, установленный на экранах U47 и U48.

Электрические компании применяют аналогичную систему контроля – допускаются мгновенные выбросы мощности, однако «превышенное» потребление, приводящее к изменению условий контракта, фиксируется только в том случае, когда превышается потребление на заданном временном интервале. Например:

В Италии в качестве эталонного времени используется четверть часа, т. е. каждые 15 минут (0-15, 15-30, 30-45, 45-0) производится подсчет как электрической компанией, так и с помощью контроллера Energy².

Если, например, максимальное ограничение по условиям контракта составляет 500 кВт, деление этого значения на 60 дает максимальную величину энергии, доступную в 1 минуту, т. е. 8,333 кВт. Затем это значение умножается на величину эталонного временного интервала, которая указана на экране I35 (в данном случае это 15 минут), чтобы вычислить энергию, доступную за 15-минутный период. Получаем значение 125 кВт/15 мин.

Контроллер Energy² оценивает тренд потребления в рамках периода и, если возникает предположение о том, что потребление может превысить установленный порог, принимает меры к недопущению такого превышения, отключая устройства, для того чтобы снизить потребление ниже максимального ограничения до конца периода (см. раздел о программировании для отключения устройств). В конце периода выполняется сброс счетчика и запускается новый цикл.

Without Energy ² control	Без контроля со стороны контроллера
	Energy ²
Electrical consumption	Установленное максимальное
max.set	электропотребление
With Energy ² control	С контролем со стороны Energy ²
Load shedding	Отключение нагрузки
Capacity vs load	Зависимость энергопотребления от
	нагрузки

Рис. 8.1

Эти графики поясняют, каким образом контроллер Energy² реализует управление энергопотреблением.

Графики на рис. 8.2 показываю те 3 основных значения, которые контролируются системой:

- Линия с номером 1 представляет Ограничение по мощности, т. е., максимальную установленную величину энергопотребления, которая не должна превышаться в эталонном периоде;
- Линия с номером 2 соответствует **полной средней потребленной энергии** и показывает график энергопотребления в эталонном периоде (15-30 мин); если эталонный период равен 15 минутам, точки на графике соответствуют измерениям, сделанным каждые 15 минут. Эта линия НИКОГДА не должна превышать ограничение по мощности.
- Линия с номером 3 представляет потребленную энергию, т. е., мгновенную энергию, потребленную системой. Допускаются превышения относительно ОГРАНИЧЕНИЯ ПО МОЩНОСТИ на короткие периоды времени, однако контроллер Energy2 будет осуществлять действия с целью поддержания величины потребления за эталонный период (значения ПОЛНОЙ СРЕДНЕЙ ПОТРЕБЛЕННОЙ ЭНЕРГИИ) ниже ОГРАНИЧЕНИЯ ПО МОЩНОСТИ.

Когда контроллер Energy² подключается к сигнальной плате, становится доступным сигнал, используемый для синхронизации измерения с временным периодом для контроля за пиками потребления. Значение эталонного периода времени, устанавливаемое на экране I35, предоставляется электрической компанией и это значение считывается через цифровой вход 5, который предназначен специально для этой цели. Поэтому, при выборе значения «YES» (Да) контроллер ожидает изменения статуса на цифровом входе 5, что означает, что в дальнейшем сброс цикла не будет выполняться с использованием внутренних часов, а для этой цели будет использоваться внешний сигнал (подключение к сигналу синхронизации см. в параграфе «Связь эмиттера сигналов с контроллером Energy²»).

С сигнальной платы поступают также сигналы RL1 и RL2 для изменения текущего тарифного диапазона (см. параграф «Тарифные диапазоны контрактов»). Если выбирается значение «YES», контроллер ожидает поступления сигналов на цифровых контактах ID1 и ID2 и изменяет тарифные диапазоны в соответствии с комбинацией поступивших сигналов. При выборе значения «NO» контроллер использует запрограммированное значение тарифного диапазона, установленное на экране «Установка тарифных диапазонов» в цикле «Maintenance» и пользуется в качестве эталона внутренними часами контроллера Energy².

+-----+ | I38| |Global power TA Set | |4mA 00000 kW| |20mA 00000 kW| +-----+

Если используется входной режим для мощности ANALOG, т. е., измерение производится преобразователем тока, установленным на экране I34, экран I38 применяется для калибровки входа, который используется для измерения общей мощности.

Значение 4 мА должно соответствовать минимальному значению шкалы преобразователя тока (обычно это «0»), а значение 20 мА соответствует максимуму, т. е., максимальному значению, считываемому преобразователем тока. Для правильной установки значений на этом экране см. параграф «Калибровка электронных преобразователей тока».

+-----+ |Max Air C. power I39| | 00000 kW | |Max refr. power | | 00000 kW |

Этот экран используется для ввода максимальной мощности, потребленной устройством рефрижерации и системой кондиционирования мощности, если установлены соответствующие электронные преобразователи тока с выходом 4 – 20 мА. Если в эти поля вводятся значения, которые превышают нуль, экраны можно будет использовать для калибровки преобразователей тока для устройства рефрижерации (экран I40) и системы кондиционирования воздуха (экран I41), а также для всех других полей, которые относятся к системам рефрижерации и/или кондиционирования воздуха (экран 9, P3, P5 и P6 в главном меню).

ΤΤ		
	140	
Refriger	ation TA set	
4mA	00000 kW	
20mA	00000 kW	
+	+	

141 |Air cond. TA set | |4mA 00000 kWI |20mA 00000 kWJ ---+ +----

Калибровка преобразователя тока для систем рефрижерации и кондиционирования воздуха. Для правильной установки значений на этом экране см. параграф «Калибровка электронных преобразователей тока».

1421 Power time refresh 0000 | +--

+

Если на экране I34 установлен режим PULSE, на экране I42 должно быть указано время для обновления расчета текущей мощности. Диапазон возможных значений составляет от 0 до 3600 секунд и это время должно соответствовать частоте импульсов, поступающих на контроллер Energy². Значение текущей мощности, вычисленное приложением, отображается на главном экране Р1 дисплея, всякий раз когда открывается данный экран. Когда считывается следующий импульс, значение обновляется автоматически, даже в том случае, если не истек интервал времени.

Внимание. Когда имеется низкое энергопотребление, интервал между импульсами следует установить так, чтобы не отображалось значение текущей мощности, равное нулю.

8.2.2 Цикл «Load configuration» (Конфигурирование нагрузки)

Экраны этого цикла используются для установки ряда характеристик для нагрузок, в частности:

Энергия (в кВт): Указывается значение мощности, присвоенное нагрузке. Это значение используется для вычисления суммарной энергии, которую может потребить нагрузка до конца цикла, чтобы рассчитать пики потребления (15, 30, 45 и 60 минут). Если это значение не превышает оставшейся квоты энергии, восстанавливается сигнал активации нагрузки; в противном случае, алгоритм начинает поиск нагрузки с самым низким приоритетом, не восстанавливая при этом активацию проблемной нагрузки. Это значение не должно обязательно совпадать с максимальной величиной мощности для нагрузки (по этому вопросу см. также раздел «Управление энергией устройств»).

Выбор значения «Shed: setting shed = YES» активирует отключение нагрузки; если указывается «shed=NO», отключение нагрузки не производится.

Примечание. Сигнал активации временного диапазона имеет более высокую приоритетность, поэтому, если данный сигнал отсутствует, нагрузка отключается независимо от того, активирован или нет этот параметр.

Приоритет: Это значение отражает важность нагрузки; в случае превышения энергопотребления отключение нагрузок производится в соответствии с назначенными им приоритетами. Первой будет отключена нагрузка с самым низким приоритетом.

Параметр «Enable light sensor = YES» активирует для нагрузки сигнал с сумеречного переключателя. Если сумеречный переключатель обнаруживает свет, нагрузка не активируется. В противном случае, производится включение нагрузки. Установка для этого поля значения «YES» (Да) означает учет на выходе нагрузки, связанной с освещением.

«Min. ON time»: это минимальное время нахождения нагрузки во включенном состоянии; в течение этого времени никакие условия не приводят к изменению состояния нагрузки.

«Min. OFF time»: это минимальное время, в течение которого нагрузка должна оставаться в отключенном состоянии. В этом случае, даже если нагрузка имеет более высокий приоритет по переключению, она будет оставаться отключенной в течение всего интервала времени, указанного в этом поле, для того чтобы не допустить частого включения/выключения нагрузки.

«Maximum utility OFF time»: это максимальное время отключения для нагрузки. После истечения этого времени сигнал активации будет отправлен независимо от приоритета и потребления энергии в конце цикла, даже в том случае, когда значение потребления превышает оставшуюся квоту по энергии и, соответственно, лимит по мощности.

++			
Load # 1 I1			
Power 00000kW			
Shed No Priority 00			
En. Light sens. No	>	Эта функция недоступна в версии «Small»	
++			

Когда отображается этот экран, соответствующий нагрузке 1, с помощью кнопки 🖤 можно изменять параметры. отображаемые на экране.

Ŷ Когда курсор мигает на первой строке, используя кнопки и можно установить значение мощности для подключенного устройства.

Нажатие кнопки 🖤 подтверждает введенные данные и выполняется переход к следующей строке, где можно задать автоматическое включение/отключение, а также указать приоритет по отношению к другим конфигурируемым устройствам.

После модификации параметров при нажатии кнопки Cocyцествляется переход на последнюю строку, где возможно задание активации нагрузки от датчика освещенности (дополнительные сведения см. в соответствующем параграфе в главе «Программа»).

Нажатие кнопки 🖤 подтверждает установку и перемещает курсор в исходную позицию, для того чтобы можно было перейти на следующий экран.

Аналогичным образом производится конфигурирование каждой из нагрузок путем перемещения по циклу с помощью

кнопки 🖤

+-----

В частности, на экранах для нагрузок 8-12-13-14-15 в модели «Large», где выходы реле имеют переключаемые контакты, может быть установлен статус реле в нормальных условиях работы: «NO» = нормально открыт; «NC» = нормально закрыт.

| Load # 8 NC |15| |Power 00000kW | |Shed No Priority 00| |En. Light sens. No | +------+

----+

Настройка этих экранов не завершает программирование нагрузок, так как необходимо еще активировать их в зависимости от временных диапазонов (см. экран «Configure loads» (Конфигурирование нагрузок) в цикле «USER»).

+-----+ |Timing load # 1 |2| |Min off time 00000s| |Max off time 00000s| |Min on time 00000s| +------+

Этот экран, а также соответствующие экраны для всех других нагрузок, используется для установки времени включения и отключения, когда происходит отключение в связи с превышением мощности (см. главу «Программа»):

минимальное время отключения для устройства;

- максимальное время отключения для устройства (после истечения этого времени с момента последнего отключения нагрузки сигнал активации посылается независимо от приоритета устройства и той энергии, которая будет потребляться до завершения цикла, даже если величина этой энергии превысит значение квоты и, соответственно, ограничение по мощности.

- минимальное время нахождения нагрузки во включенном состоянии (в течение этого времени нельзя производить какие-либо действия с нагрузкой).

Эти параметры являются важнейшими для защиты устройств.

+------+ | |9| | Digital Output #5 | | for aux.alarm | | NC |

Только для версии «Small»

Этот экран имеется только в версии контроллера «Small» — здесь цифровой выход 5 с переключаемыми контактами используется для дополнительного аварийного сигнала. На экране указывается функционирование контакта: «NO» «нормально открыт» или «NC» (нормально закрыт).

 Optm Start-Stop
 I31|

 enable on load #
 |

 (1-15) 00
 |

 0=no load
 |

Этот экран используется для установки оптимального запуска-останова (см. главу «Программа»).

Если нагрузка активируется с помощью этой функции, соответствующие аналоговые входы должны быть подключены к двум температурным датчикам: датчику температуры окружающей среды (внешнему) и внутреннему температурному датчику.

++	
32	
Light sensor type	
on/off	
i i	
++	

Этот экран используется для выбора типа сумеречного датчика: вкл./выкл. или 4 – 20 мА.

Если выбрано «on/off» (вкл./выкл.), в гравном меню отобразится экран Р16; при выборе значения 4 – 20 мА в главном меню будет доступен экран Р19 и отобразится экран U49 для установки контрольной точки.

++	
33	
Memory Reset	
No	
++	

|(Analog input #7) | |Enable alarm No | +-----+

Последний экран этого цикла используется для сброса памяти контроллера.

Эту операцию рекомендуется выполнять перед первым запуском блока до программирования параметров. Примечание. Будут удалены все настроенные значения параметров и восстановлен статус по умолчанию. Поэтому следует производить сброс буферной памяти до конфигурирования параметров.

8.2.3 Цикл «Alarm setting» (Установки аварийных сигналов)

Экран активирует аварийный сигнал, соответствующий датчику внутренней температуры, который подключен к аналоговому входу В7 модели «Large» контроллера или к входу В4 на модели «Small».

+-----+ | I50| | Active power D3 | | input enable alarm | | No |

Если считывание мощности выполняется в режиме PULSE (Импульсный), на этом экране можно активировать аварийный сигнал на цифровом входе.

Для формирования аварийного сигнала должны одновременно выполняться следующие условия:

- блок должен быть включен.
- на входе мощности должен долее 10 минут присутствовать нулевой сигнал, т. е., за этот период времени не должно быть получено ни одного импульса
- по крайней мере, одна нагрузка должна быть активирована для работы посредством временного диапазона или вручную с помощью цифрового контакта

Дополнительные сведения относительно аналоговых и цифровых входов см. в параграфах, где рассматриваются терминальные блоки обеих моделей контроллера.

8.2.4 Цикл «Change password» (Изменить пароль)

Как об этом уже упоминалось ранее, можно изменить пароль для цикла «Installer» – см. следующий экран.

8.3 Обслуживание

Уровень «Maintenance» (Обслуживание) является второй группой настроек, используемых, в частности, для установки диапазонов для определенных тарифов мощности после выбора значения «NO» (Her) на экране I37. В противном случае, программное обеспечение ожидает поступления сигнала с внешней платы (эмиттера сигналов), чтобы определить текущие тарифы мощности для контроллера Energy².

TT	
MP	
Maint Password	
0000	
++	

При вводе верного пароля (по умолчанию «0000») и его подтверждения нажатием кнопки ^С происходит переход в следующее меню.

+	+
Rates	ML
Probes Of	fset
Counters	Reset
Aux ID, pv	vd ch.
+	+

Кнопка 🤎 используется для выбора одного из четырех полей экрана, а при нажатии кнопки 🖤 осуществляется переход к соответствующему циклу.

8.3.1 Цикл «Rate band setting» (Установка тарифного диапазона)

Дополнительные сведения см. в параграфе «Тарифные диапазоны контрактов».

M1 Yearly rate set Jan 0 Feb 0 Mar 0 Apr 0 May 0 Jun 0 ++	
++ M2 Jul 0 Aug 0 Sep 0 Oct 0 Nov 0 Dec 0 	

----+

Для каждого месяца года на этом экране используются следующие коды сезона:

- 0 период без нагрузки;
- 1 зимний период;
- 2 летний период.

+-----+ |Weekly rate set M3| | Sun E | |Mon E Tue E Wed E | |Thu E Fri E Sat E |

+----+

Для каждого дня недели возможными значениями являются — «NV» (Нагрузка) и «V» (Отсутствие нагрузки). В итальянских тарифах днями «нагрузки» считаются будние дни недели.

Примечание. Указание для дня недели значения «V» означает его приписывание к характеристикам сезона 0. Выбор значения «NV» означает приписывание характеристик для сезона 1 или для сезона 2.

+----+ |F1 hours season 0 M4| on 00:00 off 00:00 | on 00:00 off 00:00 |on 00:00 off 00:00 | +-----+ +-----+ |F2 hours season 0 M5| lon 00:00 off 00:00 | on 00:00 off 00:00 on 00:00 off 00:00 +-----+ +-----+ |F3 hours season 0 M6| lon 00:00 off 00:00 | on 00:00 off 00:00 |on 00:00 off 00:00 | +----+ +-----+ |F4 hours season 0 M7| on 00:00 off 00:00 | on 00:00 off 00:00 |on 00:00 off 00:00 | +----+

Экран М4, а также последующие экраны, используются для установки ежедневных диапазонов F1, F2, F3 и F4 в соответствии с сезонами (0, 1, 2). Для каждого дня имеется 4 экрана.

Пример: Для каждого сезона имеются экраны: «часы F1 сезона X», «часы F2 сезона X», «часы F3 сезона X» и «часы F4 сезона X». Внутри каждого экрана может быть задано до трех временных диапазонов, относящихся к аналогичным тарифным диапазонам, которые могут применяться неоднократно в один и тот же день.

	M16
Defaults	
No	1
+	+

+----+

В любом случае, путем установки значения «YES» в поле на этом экране могут быть автоматически инициированы тарифные диапазоны, соответствующие итальянскому контракту AV1. Значения «ON» и «OFF» для параметров загружаются на экраны M1, M2, ..., M15, соответствующие тарифным диапазонам F1, F2, F3 и F4. Если некоторые значения не соответствуют тем, которые запрограммированы для тарифных диапазонов контракта, можно изменить их вручную после инициализации стандартных значений.

Переменная автоматически сбрасывается в значение «NO».

8.3.2 Цикл «Probe offsets» (Смещения датчиков)

 INTC Offset
 M17

 |Al4 Probe
 0.0 °C |

 |Al5 Probe
 0.0 °C |

 |Al7 Probe
 0.0 °C |

---+

+----+

Если значение температуры, считанное с датчиков NTC, неверно, можно выполнить калибровку с использованием программного смещения.

В версии «Large»: температура внешнего воздуха, температура внутри и температура воды считываются с аналоговых входов 4, 5 и 7.

В версии «Small»: температура внешнего воздуха и температура внутри считываются с аналоговых входов 3 и 4.

8.3.3 Цикл «Reset counters» (Сброс счетчиков)

8|

1	,
Counters Res	et M1
Total N	0
Annual I	No
Monthly	No
+	+
+	+
M1	9
Refrigeration	No
Climatization	Noj
i I	
• •	

Могут быть вручную сброшены счетчики (экраны М18 и М19), относящиеся к полному потреблению энергии (см. экран Р4), потребленной за год энергии (см. экран Р7), потребления в текущем месяце (Р8), потребления системой рефрижерации (см. экран Р5) и системой кондиционирования воздуха (см. экран Р6).

Чтобы сбросить счетчик, выберите его с помощью мигающего курсора (используя кнопки 🖤 и 🖤), нажмите кнопку

, выберите значение «YES» с помощью кнопок 🖤 и 🖑, а затем подтвердите операцию, нажав кнопку 🖉 Все описанные счетчики отображаются в главном меню.

8.3.4 Цикл «Aux IO and change password» (Вспомогательный ввод-вывод и смена пароля)

Эти экраны отображаются только в том случае, если для считывания мощности в качестве входного выбран импульсный сигнал (режим «PULSE», экран I34, см. в меню «Installer» цикл установок мощности). В противном случае, единственным отображаемым экраном будет смена пароля.

+-----+ | M20| |Sincronization | |signal | | 0 | +-----+

Статус сигнала синхронизации (экран М20) может быть отображен только в случае, если этот сигнал активирован на экране I36 (см. цикл установок мощности в меню «Installer»).

Цифровой вход 5 используется для этого сигнала (ID5 - C5) на обеих моделях контроллера.

На этом экране отображается статус цифровых входов 1 и 2 (ID1-C1 и ID2-C2), которые определяют тарифный диапазон в зависимости от комбинации сигналов на контактах, если эти входы были предварительно активированы для этой функции (экран I37, см. цикл установок мощности в меню «Installer»).

Дополнительные сведения см. в параграфе «Тарифные диапазоны контрактов». Ниже приводятся комбинации контактов с соответствующими тарифными диапазонами.

Контакт RL1 (DI1)	Контакт RL2 (DI2)	Экран M21	CE3OH 0	CE3OH 1	CE3OH 2	Суббота/воскресен ье/праздник
Закрыт	Закрыт	00	F4	F4	F4	F4
Закрыт	Открыт	01	F4	F2	F3	F4
Открыт	Закрыт	10	F4	F1	F2	F4
Открыт	Открыт	11	F4	-	-	F4

Таблица 8.1

+-----+ | M22| |Energy pulses |Active 0 | |Reactive 0 | +-----+

На этом экране отображаются импульсы активной и реактивной энергии, поступающие с платы A2 (см. параграф «Преобразователь импульсов мощности A2»).

+-----+ | M23| |Change password | 0000 | | |

Как и на других уровнях, здесь можно изменить пароль.

8.4 Пользователь

- На этом уровне могут быть выполнены следующие операции:
- установка текущей даты и времени;
- конфигурирование доступных временных диапазонов, установка для каждого из них начального времени в часах и минутах;
- настройка временных диапазонов для каждой нагрузки;
- установка максимального текущего лимита мощности. Эта контрольная точка отражает уровень мощности, который не может быть превышен в течение дня, для того чтобы избежать штрафных санкций по контракту с электрической компанией;
- включение системы с помощью одновременного нажатия кнопок 🏼 и 🖨

При вводе верного пароля (по умолчанию «0000») и его подтверждения нажатием кнопки 🖤 происходит переход в меню.

Переместите мигающий курсор в поле с помощью кнопок 🎱 и 🧶, а затем подтвердите операцию, нажав кнопку

8.4.1 Цикл «Load configuration» (Конфигурирование нагрузки)

Этот раздел используется для определения работы с каждой нагрузкой — применяются два экрана:

| Time schedule U1| | load # 1 | |Standard 0 | |Special 1N 2N 3N 4N | +------+

---+

Временные диапазоны

Пользователь может выбрать: стандартные, недельные и специальные диапазоны. При перемещении в поле STANDARD (Стандартные) соответствующий диапазон может быть назначен нагрузке путем выбора значения от 1 до 4 следующим образом:

- от 1 до 3 стандартные ежедневные диапазоны
- 4 недельный диапазон.

При перемещении в поле SPECIAL BAND (Специальный диапазон) может быть независимо активирован каждый из диапазонов, в отличие от стандартных диапазонов, где выбор одного значения исключает использование остальных трех значений.

Описание временных диапазонов см. в разделе для экранов «Установка временных диапазонов» в цикле «User».

```
| Enable load # 1 U2|
| |
|Time Sch. Bypass No |
|Duty cycling No |
```

+----+

Активация нагрузки

Этот экран используется для активации нагрузки для: *работы вне диапазона* (выберите значение «YES») и *рабочего* цикла (подключение ID6-C6).

При перемещении между экранами в циклах TIME BANDS (Временные диапазоны) и ENABLE LOAD (Активировать нагрузку) отображаются экраны, относящиеся к нагрузкам, управляемым обеими версиями контроллера Energy².

8.4.2 Цикл «Time band setting» (Установка временного диапазона)

Экраны этого цикла используются для определения временных диапазонов в соответствии с требованиями не только пользователя, но также и требованиями к нагрузке. Фактически, имеются 4 стандартных («STANDARD») диапазона (3 ежедневных и 1 недельный) и в каждом из них присутствуют 4 поддиапазона, определяемых как диапазоны «SPECIAL» (Специальные), которые имеют приоритет над стандартными диапазонами. Каждая электрическая нагрузка, подключенная к контроллеру Energy² и настроенная для работы в рамках временных диапазонов, может быть сопоставлена с одним из 4 стандартных диапазонов (максимум один диапазон на каждую нагрузку) и со всеми четырьмя специальными диапазонами (до 4 диапазонов одновременно) путем программирования соответствующего стандартного диапазона и любых специальных диапазонов.

|Date-Time set U31| Hour: 00:00 Date: 00/00/00 WeekDay: +-----

-+

Для использования временных диапазонов важное значение имеет правильная синхронизация даты и времени – см. экран U31.

СТАНДАРТНЫЕ ДИАПАЗОНЫ (1, 2, 3, 4):

ДНЕВНЫЕ 1-2-3:

+----+ IDaily T Sch. 1a U32I On 00:00 Off 00:00 | Daily T Sch. 1b |On 00:00 Off 00:00 | +----+ +----+ | Daily T Sch. 2a U33| |On 00:00 Off 00:00 |

Daily T Sch. 2b On 00:00 Off 00:00 | +-----+

+----+ |Daily T Sch. 3a U34| |On 00:00 Off 00:00 | Daily T Sch. 3b |On 00:00 Off 00:00 | +----+

Эти экраны используются для активации различных нагрузок с отличающимися временами включения и отключения, в соответствии с требованиями пользователя.

Если нагрузка была предварительно ассоциирована с диапазоном 1 STANDARD (экраны U1, U3, U5, ...), этот экран используется для установки ежедневных времен включения и отключения в рамках этого диапазона.

Дополнительные сведения см. в параграфе, посвященном стандартным диапазонам, в главе «Программа».

Пример программирования временных диапазонов

Для каждого дня может быть определено два диапазона путем указания для каждого из них времени включения и отключения.

Если времена, указанные в полях «ON» (Включение) и «OFF» (Отключение) совпадают, диапазон игнорируется (например, не будет учитываться диапазон «ON 00:00 / OFF 00:00»).

Если время, указанное в поле «ON» меньше времени в поле «OFF», нагрузка будет активна в период между двумя заданными значениями времени и будет отключена все время, которое не входит в определенный диапазон. (Рис. 1) Если время, указанное в поле «ON» является более поздним, чем время в поле «OFF», нагрузка будет отключена в период между двумя заданными значениями времени и будет активирована все время, которое лежит за пределами этого диапазона. (Рис. 2)

Так как оба диапазона могут быть определены для каждого дня, общая работа нагрузки (рис. 4) будет зависеть от суммарного эффекта, вносимого двумя диапазонами (операция «ИЛИ») (рис. 3)

Если нагрузка может оставаться включенной весь день, тогда при установке временного диапазона следует минимизировать время отключения, как показано, например, на рис. 5, где нагрузка отключается только на одну минуту.

В качестве альтернативы, для непрерывной работы целый день можно воспользоваться дополняющими диапазонами, которые перекрывают друг друга, как показано на рис. 6, 7 и 8.

Если нагрузка была предварительно ассоциирована с диапазоном 4 STANDARD (экраны U1, U3, U5, ...), этот экран используется для установки еженедельных времен включения и отключения в рамках этого диапазона. Следует учесть, что две операции «ON» (Включить) и две операции «OFF» (отключить) могут быть установлены для одного и того же дня, так как имеется отличие между «AM» (до полудня) и «PM» (после полудня): экраны U35, U36, U37 – AM и экраны U38, U39, U40 – PM.

Дополнительные сведения см. в параграфе, посвященном стандартным диапазонам, в главе «Программа».

СПЕЦИАЛЬНЫЕ ДИАПАЗОНЫ (1, 2, 3, 4):

СПЕЦИАЛЬНЫЙ 1:

+-----+ | U41| | Special T Sch. # 1 | | Italian Holidays | | (implemented) |

Если нагрузка сопоставляется с диапазоном 1 SPECIAL (Специальный) (экраны U1, U3, U5,), приложение не будет активизировать устройство (выполнять принудительное отключение) в национальные праздники, следуя ежегодному календарю. Во все остальные дни будет использоваться программирование, соответствующее диапазону STANDARD.

СПЕЦИАЛЬНЫЙ 2:

+-----+ | U42| |Special T. Sch. # 2 | | dd:00 mm:00 | | | |

Если нагрузка сопоставляется с диапазоном 2 SPECIAL (Специальный) (экраны U1, U3, U5,), в день месяца, установленный на экране U42, приложение не будет активизировать устройство (выполнять принудительное отключение).

Дополнительные сведения см. в параграфе, посвященном специальным диапазонам, в главе «Программа».

СПЕЦИАЛЬНЫЙ 3:

+-----+ | U43| |Special T. Sch. # 3 | | dd:00 mm:00 | | | | +-----+

+----+

|Spec T. Sch.# 3a U44| |On 00:00 Off 00:00 | |Spec T. Sch.# 3b | |On 00:00 Off 00:00 | +------+

Если нагрузка сопоставляется с диапазоном 3 SPECIAL (Специальный) (экраны U1, U3, U5,), в день месяца, установленный на экране U43, приложение будет выполнять принудительное включение устройства. Кроме того, экран U44 может использоваться для установки двух значений времени «ON» (Включить) и двух значений времени «OFF» (Отключить) на один и тот же день.

СПЕЦИАЛЬНЫЙ 4:

+-----+ | U45| |Special T. Sch. # 4 | |dd:00 mm:00 | | | | +-----++

|Spec T. Sch.# 4a U46| |On 00:00 Off 00:00 | |Spec T. Sch.# 4b | |On 00:00 Off 00:00 | +------------+

Установка выполняется аналогично предыдущему диапазону, но применительно к диапазону SPECIAL BAND 4.

8.4.3 Цикл «Set point» (Контрольная точка)

	U47	
Max powe	r set	
F1 hours	:00000	kW
F2 hours	:00000	kWj
+	+	•
+	+	
l	U48	
 F3 hours	U48 :00000	kW
 F3 hours F4 hours	U48 :00000 :00000	kW kW
 F3 hours F4 hours 	U48 :00000 :00000	kW kW

----+

Могут быть запрограммированы четыре разных контрольных точки, которые отражают возможности по мощности в тарифных диапазонах F1, F2, F3 и F4.

Установленные здесь значения будут отображаться на главном экране Р1 (параметр «Maximum power» (Максимальная мощность), который не должен превышаться) в соответствии с текущим тарифным диапазоном.

Если на экране I37 активированы цифровые входы для изменения тарифных диапазонов, приложение контролирует цифровые входы ID1 и ID 2, и в случае поступления сигналов в зависимости от их комбинации изменит установленную здесь контрольную точку на то значение, которое соответствует новому тарифному диапазону.

В противном случае, по сигналу внутренних часов будет осуществляться изменение контрольной точки в зависимости от тарифа, указанного на экранах М1 – М15.

Следовательно, требуемое потребление мощности может настраиваться в зависимости от наиболее удобного тарифного диапазона.

Если, например, наиболее экономичным по контракту является диапазон F4, более высокое значение контрольной точки может быть задано на экране U48 в поле, соответствующем диапазону F4, с тем чтобы уменьшить возможные отключения устройств.

И наоборот, если самым затратным является диапазон F1, контрольная точка может быть снижена, чтобы произвести заранее деактивацию устройств и, таким образом, оптимизировать энергопотребление.

| U49| |Ligth sensor | |Setp. (1-100) 000%| | |

Экран недоступен в версии «Small», так как отсутствует вход датчика света.

Этот экран, используемый в тех случаях, когда на экране I32 установлено сумеречное переключение по сигналу 4 – 20 мА, применяется для задания контрольной точки сумерков (1-100%), отражающей порог, при превышении которого (повышении интенсивности освещения) отключается сигнал активации нагрузок, связанных с освещением (см. экраны I1, I3, ...).

+-----+ |3 Way valve Set U50| |Fully open | |Low. Temp. 000.0 °C | |Upp. Temp. 000.0 °C |

Экран недоступен в версии «Small», так как отсутствует аналоговый выход для 3-направленного вентиля.

Как уже отмечалось выше, контроллер Energy² может управлять 3-направленным вентилем, контролируя полное открытие или закрытие вентиля, или степень его открытия в зависимости от температуры воды в системе. В последнем случае, необходимо установить значение сигнала для «более низкой» и «более высокой» температуры. Очевидно, что значение для «более низкой» температуры должно быть меньше, чем значение для «более высокой» температуры. +-----+ | U51| | Internal Temp. Set | | 00.0 °C | | |

+-----+Экран для установки рабочей точки внутренней температуры.

Дополнительные сведения относительно экранов U50 и U51 см. в главе «Программа», параграф «Управление трехнаправленным вентилем».

+-----+ | U52| |Setpoint override | |Band 0.0 °C | |Offset 0.0 °C | +-----+

Экран для установки диапазона компенсации и смещения. Дополнительные сведения см. в параграфе «Компенсация для рабочей точки температуры» в главе «Программа».

U53| |Duty cycling set | |Cycle Time 000 min| | |

Этот экран используется для установки времени цикла для функции рабочего цикла.

+-----+ | U54| |Duty cycling set | |Min off time 000min| |Max off time 000min| +------+

Этот экран используется для установки минимального и максимального времен отключения в рамках интервала рабочего цикла.

+-----+ |Duty cycling set U55| |Winter temp. | |Min 00.0 °C | |Max 00.0 °C | +-----++

На этом экране устанавливается минимальная и максимальная температура для функции рабочего цикла в системе обогрева.

+-----+ |Duty cycling set U56| |Summer temp. | |Min 00.0 °C | |Max 00.0 °C | +------+

На этом экране устанавливается минимальная и максимальная температура для функции рабочего цикла в системе охлаждения.

Дополнительные сведения относительно экранов U53, U54, U55 и U56 см. в параграфе «Рабочий цикл» в главе «Программа».

8.4.4 Цикл «Communication setting» (Параметры связи)

+-----+ |Protocol:CAREL U57| |Comm. speed: | |1200 (RS485/RS422) | |Ident.: 000| +------+

Если контроллер Energy² подключается к супервизорной системе, для обеспечения правильной связи необходимо настроить ряд параметров. Это протокол передачи (CAREL, Modem или Modbus), скорость передачи данных и идентификатор (адрес) контроллера.

+-----+ | U59| |Change user | |password | | 0000 | +------+

Как и на других уровнях, здесь можно изменить пароль.

8.5 Язык

Последнее поле в меню SETTINGS (Настройки) используется для задания языка. Возможными значениями являются: «English» (Английский) и «Italian» (Итальянский).

+	+	
	L1	
	Language	
1	ENGLISH	
İ		
+	+	

9. УПРАВЛЕНИЕ ВРЕМЕННЫМИ ДИАПАЗОНАМИ ВКЛЮЧЕНИЯ/ОТКЛЮЧЕНИЯ

Управление временными диапазонами обеспечивает подачу сигналов включения или отключения на различные нагрузки в соответствии со встроенными часами контроллера. Для каждого дня недели пользователь может установить отличающиеся временные диапазоны, указав для каждого из них часы и минуты моментов включения и отключения.

Используются две группы временных диапазонов: стандартные и специальные.

9.1 Стандартные диапазоны

В группе стандартных диапазонов, содержащей 4 диапазона, имеется возможность выбора из трех ежедневных и одного еженедельного диапазона.

Для обоих типов приложение использует два «дневных поддиапазона»; если нагрузка находится в рамках временного интервала, определенного поддиапазонами, отправляется сигнал активации временного диапазона. Использование обоих поддиапазонов находится в компетенции пользователя; если нужен только один поддиапазон, во втором могут быть оставлены значения по умолчанию — обычно это значения «00» во всех полях.

Выб	Тип	Описание
ор	диапазон	
	а	
0	Выключе	Устройство всегда отключено
	но	
1	Диапазон	Пользователь может по своему усмотрению задать два дневных временных диапазона, указав для
	1	них моменты включения и отключения (в часах и минутах).
2	Диапазон	Пользователь может по своему усмотрению задать два дневных временных диапазона, указав для
	2	них моменты включения и отключения (в часах и минутах). Эта альтернатива для диапазона 1.
3	Диапазон	Пользователь может по своему усмотрению задать два дневных временных диапазона, указав для
	3	них моменты включения и отключения (в часах и минутах). Эта альтернатива для диапазонов 1 и 2.
4	Диапазон	Активация устройства в соответствии с недельным диапазоном.
	4	

Таблица 9.1

9.2 Специальные диапазоны

Тип Описание диапазона Выбор в этом поле значения «YES» указывает на то, что нагрузка отключается в дни национальных Специальный диапазон 1 праздников. Выбор в этом поле значения «YES» указывает на то, что нагрузка отключается в тот день, который Специальный диапазон 2 устанавливается на экране. Пользователь может по своему усмотрению задать два временных диапазона, указав для них моменты Специальный диапазон 3 включения и отключения (в часах и минутах). Для этого диапазона требуется указание дня и месяца. Пользователь может по своему усмотрению задать два временных диапазона, указав для них моменты Специальный диапазон 4 включения и отключения (в часах и минутах). Для этого диапазона требуется указание дня и месяца.

Таблица 9.2

Для специальных диапазонов 3 и 4: выбор одного из этих диапазонов приведет к установке временного диапазона, активирующего сигнал независимо от стандартных диапазонов. Для диапазонов 2, 3 и 4 на экране устанавливаются значения для дня, месяца и времени.

Для специальных диапазонов 3 и 4 доступны также два поддиапазона.

По существу, специальные диапазоны 1 и 2 являются диапазонами принудительного отключения, тогда как диапазоны 3 и 4 используются как диапазоны принудительного включения.

В тех случаях, когда стандартные и специальные диапазоны совпадают, специальный диапазон будет определять сигнал активации временного диапазона. В случаях, когда совпадают специальные диапазоны отключения и включения, диапазон включения будет определять сигнал активации. В любом случае, управление работой каждой конкретной нагрузки (если выбирается функция) может быть расширено за пределы временных диапазонов, если активируется цифровой вход ID6.

9.3 Оптимальный запуск/останов

Эта функция после периода автообучения оптимизирует моменты запусков и отключений для системы кондиционирования воздуха и наряду с этим гарантирует достижение идеальных условий в установленное время.

На практике, это относится к времени предварительного запуска по утрам, когда нужно достичь установленной точки, и времени перед отключением системы по вечерам, когда после определенного времени уже не требуется поддерживать заданные климатические условия.

Это переменное значение времени может быть меньше установленного стандартного времени и путем оптимизации операций может быть обеспечено существенное энергосбережение.

Для расчета моментов времени, которые очевидно зависят от климатических условий и периода, программа анализирует следующие параметры:

- комфортная рабочая точка (экран U51)
- наружная температура и температура внутри здания (датчики В4 / В7 на версии «Large» контроллера Energy², датчики В3 / В4 на версии «Small» контроллера Energy²)
- вычисленные контроллером времена предварительного запуска и предварительного отключения за три предыдущих дня.

Эта функция может активироваться только для одного выхода, связанного с управлением системой кондиционирования воздуха.

 Optm Start-Stop
 I31|

 enable on load #
 |

 (1-15) 00
 |

 0=no load
 |

----+

9.4 Компенсация для рабочей точки температуры

Функция управления оптимальным запуском/отключением может быть дополнена учетом рабочей точки для внутренней температуры и вводом компенсации на основе измерения температуры снаружи, что позволяет создать более комфортные условия и способствует энергосбережению.

Например, предположим, что промышленная система (с кондиционированием воздуха) имеет внутреннюю температуру на 10°С ниже наружной температуры — такая разница температур может мешать работе персонала и снижать уровень комфортности, так как фактически для оптимального комфорта максимальное различие внешней и внутренней температур не должно превышать 6°С.

В этом случае функция компенсации в системе охлаждения уменьшает рабочую точку на несколько градусов, снижая разницу температур и повышая при этом комфортность внутри помещения. Для работы функции компенсации необходимо наличие датчика температуры снаружи здания. Функция осуществляет управление на основе значения компенсации рабочей точки, различия температур и смещения.

++
U51
Internal Temp. Set
00.0 °C
i i
++
++
U52
Setpoint override
Band 0.0 °C
Offset 0.0 °C
++

Поведение системы поясняется следующим графиком.

Compensation set point	Рабочая точка
	компенсации
Compensation offset	Смещение
	компенсации
Outside temperature	Внешняя температура
Band compensation	Диапазон
proportional	пропорциональной
	компенсации
Temperature set point	Рабочая точка
	температуры

В отношении компенсации для системы обогрева могут быть выполнены аналогичные действия, однако величина компенсации вычисляется при этом в виде снижения рабочей точки, а не ее повышения.

Примечание.

Изменения температуры рабочей точки при использовании функции компенсации не оказывают влияния на фактическую контрольную точку системы, так как при этом производится управление системами, внешними по отношению к контроллеру Energy². Воздействие может проявиться только при использовании оптимальных интервалов запуска-останова.

9.5 Рабочий цикл

Функция рабочего цикла отключает устройства (для нагрева или охлаждения) в моменты времени, которые зависят от внешней температуры и ряда параметров, установленных на экране (интервал рабочего цикла, максимальное время отключения, минимальное время отключения). Работа функции может быть продемонстрирована на следующем примере:

Duty cycling duration	Продолжительность рабочего
	цикла
Duty cycling in heating	Рабочий цикл в режиме нагрева
mode	
Duty cycling in cooling	Рабочий цикл в режиме
mode	охлаждения
Max. OFF time	Максимальное время отключения
Min. OFF time	Минимальное время отключения
Heating always ON	Нагрев всегда включен
Cooling always ON	Охлаждение всегда включено

Пример:

Положим, что для интервала рабочего цикла установлено значение 30 минут, максимальное время отключения равно 20 минутам, минимальное время отключения составляет 10 минут и установлены следующие температуры: T1 = -5°C, T2 = 5°C, T3 = 20°C и T4 = 30°C.

Когда температура опускается ниже T1 (-5°C), блоки обогрева (нагреватели или змеевики с теплой водой) включаются для непрерывной работы; если внешняя температура находится в диапазоне от T1 (-5°C) до T2 (+5°C), блоки обогрева останавливаются каждые 30 минут на время, пропорциональное температуре: 10 минут при -5°C, 20 минут при 5°C. Для температур выше T2 (+5°C) всегда активируется максимальное время отключения.

Аналогично работает и система охлаждения. Каждая нагрузка может быть сопоставлена с функцией рабочего цикла путем ее выбора на экранах цикла «Конфигурация нагрузки», в ветви «User»:

+	+
U53 Duty cycling se Cycle Time 0 +	i ≥t 00 min +
+	+
1 1154	
	1
Duty cycling se	21
Min off time 0)0min
Max off time 0	00minl
+	+
+	+
Duty cycling se	et U55
Winter temp.	
Min 00 0 °C	: í
Max 00.0 °	
, 100.0 V	
+	+
+	+
Duty cycling se	et U56
Summer temp.	.
Min 00.0 °C	; ;
IMax 00.0 °(Ċİ
	- 1

+----+

9.6 Управление 3-направленным вентилем

Аналоговый выход 1 используется для управления 3-направленным вентилем для кондиционирования воздуха с применением пропорционального режима, как показано на следующем рисунке.

Когда температура воды ниже нижней границы ската, 3-направленный вентиль полностью открыт, и наоборот, если температура поднимается выше верхней границы ската, 3-направленный вентиль полностью закрыт. Между ограничениями происходит пропорциональное управление.

ΤΤ
P18 Water Temperature 00.0°C
++
++
3 Way valve Set U50
IFully open I
Low. Temp. 000.0 C
Upp. Temp. 000.0 °C
++
++
P20
3Way valve
position 000.0%
++

Примечание. Эта функция отсутствует в версии «Small» контроллера Energy².

9.7 Управление с использованием сумеречного индикатора

Нагрузка может управляться с использованием сумеречного переключателя. При этом производится или включение/отключение или применяется аналоговый датчик с пороговым значением.

+----+ 132 Light sensor type |on/off ----+ U49| Ligth sensor |Setp. (1-100) 000%| + + -+ P19| Light intensity | 000 (0-100) + + +------+ 11 | Load # 1 |Power 00000kW Shed No Priority 00 En. Light sens. Yes +----+

Примечание. Эта функция отсутствует в версии «Small» контроллера Energy².

10. СПИСОК АВАРИЙНЫХ СИГНАЛОВ

При нажатии кнопки 😡 происходит переход в цикл аварийных сигналов. Если аварийные сигналы отсутствуют, отобразится только один экран, содержащий сообщение «No alarms» (Нет аварийных сигналов) (AL0). Если имеются

активные аварийные сигналы, воспользуйтесь кнопками 🐨 и 🖑 для их отображения, а при повторном нажатии

кнопки 🕼 отключается звуковой сигнал.

Чтобы сбросить аварийные сигналы, после сброса звукового сигнала нажмите еще раз кнопку прежнему имеется источник аварийного сигнала, система снова активирует аварийную сигнализацию, включит звуковой сигнал и активирует цифровой выход 16. В следующей таблице перечислены все возможные аварийные сигналы.

Наим	Сообщение	Тип	Проверки
енова			
ние			
AL0	No alarms (Нет аварийных сигналов)		Это сообщение отображается, когда аварийные сигналы не обнаружены
AL1	«СТ total power (Analogue in. 1) Out of range 4 to 20 mA» (Полная мощность преобразователя тока (аналоговый вход 1) — выход за пределы диапазона 4-20 мA)	Предуп режден ие	Проверьте правильность калибровки преобразователя тока (экран I38 цикла «Installer») и убедитесь, что не превышен диапазон 4 – 20 мА
AL2	«СТ refrig. power (Analogue in. 2) Оut of range 4 to 20 mA» (Мощность преобразователя тока рефрижератора (аналоговый вход 2) — выход за пределы диапазона 4-20 мA)	Предуп режден ие	Аналогично предыдущему сигналу, но относится к экрану I40, цикл «Installer»
AL3	«СТ air-con power (Analogue in. 3) Out of range 4 to 20 mA» (Мощность преобразователя тока системы кондиционирования воздуха (аналоговый вход 3) — выход за пределы диапазона 4-20 мA)	Предуп режден ие	Аналогично предыдущему сигналу, но относится к экрану I41, цикл «Installer»
AL4	«Ambient temperature probe (Analogue in. 4) Out of range NTC» (Датчик температуры окружающей среды (аналоговый вход 4) — выход за пределы диапазона NTC)	Предуп режден ие	Проверьте проводку
AL5	«Water temperature probe» «(Analogue in. 5) Out of range NTC» ((Датчик температуры воды) (аналоговый вход 4) — выход за пределы диапазона NTC)	Предуп режден ие	Аналогично предыдущему пункту
AL6	«Light sensor (Analogue in. 6)» «Out of range 4 to 20 mA» (Датчик освещенности (аналоговый вход 6). Выход за пределы диапазона 4-20 мA)	Предуп режден ие	Проверьте правильность проводки и убедитесь в том, что сигнал не выходит за пределы соответствующего диапазона (от 4 до 20 мА)
AL7	«Inside temp probe (Analogue in. 7)» «Out of range NTC» (Датчик температуры внутри (аналоговый вход 7). Выход за пределы диапазона NTC)	Предуп режден ие	Аналогично сигналу AL4
AL8	«Clock board broken or missing» (Плата часов повреждена или отсутствует)	Серьез ная неиспр авность	Проверьте правильность подключения платы на контроллере Energy ² .
AL9	«Type T flash memory not working» (Не работает флэш- память типа T)	Серьез ная неиспр авность	Отключите блок на несколько секунд, а затем снова его включите (частичная переустановка). Если это не позволит разрешить проблему, выполните сброс буферной памяти на экране I33

AL10	«Excess power» (Превышение мощности)	Предуп режден ие	Если происходит кратковременное превышение максимального ограничения по мощности, аварийный сигнал не активируется. Однако в том случае, когда средняя мощность за временной период превышает ограничение по мощности, отображается это предупреждение. Эта ситуация может возникнуть, когда отключение устройств, производимое контроллером Energy ² , не позволило снизить входную мощность ниже установленного максимального ограничения. Это может привести к штрафным санкциям или к изменениям в контракте со стороны электрической компании.
AL11	«Delayed synchronisation signal» (Задержка сигнала синхронизации)	Серьез ная неиспр авность	Этот аварийный сигнал может быть активирован, если контроллер Energy ² не обнаруживает сигнал синхронизации на цифровом входе 5
AL12	«Early synchronisation signal» (Преждевременный сигнал синхронизации)	Серьез ная неиспр авность	Этот аварийный сигнал активируется, когда на цифровом входе 5 контроллером Energy ² обнаружен сигнал синхронизации до завершения временного периода
AL13	«Power input error or DI 3 not connected» (Ошибка на входе мощности или нет подключения к DI 3)	Серьез ная неиспр авность	Этот сигнал формируется, когда считывание мощности активировано на экране I50 и выполняется в режиме PULSE (Импульсный) через импульсный вход. Для формирования аварийного сигнала должны ОДНОВРЕМЕННО выполняться следующие условия: на входе мощности должен долее 10 минут присутствовать нулевой сигнал, т. е., за этот период времени не должно быть получено ни одного импульса блок должен быть включен по крайней мере, одна нагрузка должна быть активирована для работы посредством временного диапазона или вручную с помощью цифрового контакта

Таблица 10.1

11. СПИСОК ПЕРЕМЕННЫХ СУПЕРВИЗОРА

Описание	Тип	Канал	Поток	Имя переменной
Бит 1 тарифного диапазона	Цифр овая	1	R	ID_TARIFFA1
Бит 2 тарифного диапазона	Цифр овая	2	R	ID_TARIFFA2
Активизация работы вне диапазонов	Цифр овая	3	R	EXT_TIME
Цифровой датчик освещенности	Цифр овая	4	R	INGRESSO_LUCE
Статус нагрузки номер 1 - 15	Цифр овая	5-19	R	D1 – D15
Активация отключения нагрузки 1 - 15	Цифр овая	21-35	RW	SHED1-SHED15
Активация специального диапазона номер 1 для нагрузки номер 1 - 15	Цифр овая	36-50	RW	ABILITAFS1C1 - ABILITAFS1C15
Активация специального диапазона номер 2 для нагрузки номер 1 - 15	Цифр овая	51-65	RW	ABILITAFS2C1 - ABILITAFS2C15
Активация специального диапазона номер 3 для нагрузки номер 1 - 15	Цифр овая	66-80	RW	ABILITAFS3C1 - ABILITAFS3C15
Активация специального диапазона номер 4 для нагрузки номер 1 - 15	Цифр овая	81-95	RW	ABILITAFS4C1 - ABILITAFS4C15
Активация работы вне временного диапазона для нагрузки номер 1 - 15	Цифр овая	96-110	RW	EXT_TIME1 - EXT_TIME15
Активация работы с датчиком освещенности для нагрузки номер 1 - 15	Цифр овая	111-125	RW	OVERLS1 - OVERLS15
Активация рабочего цикла для нагрузки номер 1 - 15	Цифр овая	126-140	RW	ABDC1 - ABDC15
Сброс счетчика общей энергии	Цифр овая	142	RW	RESET_TOT_KWH
Сброс годового счетчика энергии	Цифр овая	143	RW	RESET_ANNO_KWH
Сброс месячного счетчика энергии	Цифр овая	144	RW	RESET_MESE_KWH
Сброс счетчика энергии для рефрижерации	Цифр овая	145	RW	RESET_CONT_REFRI
Сброс счетчика энергии для кондиционирования воздуха	Цифр овая	146	RW	RESET_CONT_CONDI
Тип датчика освещенности	Цифр овая	147	RW	SCELTA_SENSORE_LUCE
Инициализация тарифных диапазонов AV1	Цифр овая	148	RW	INIZIALIZZA
Активация аварийного сигнала для аналогового входа номер 1 - 7	Цифр овая	149-155	RW	ABILITALLARME_IA1 - ABILITALLARME_IA7
Включение/отключение системы	Цифр овая	167	RW	SYSON
Сигнал синхронизации	Цифр овая	176	RW	SINCRO_EXT
Тарифный диапазон от D1	Цифр овая	177	RW	FT_DI
Активация аварийного сигнала для входа энергии (D3)	Цифр овая	178	RW	EN_AL_P
Установка часов	Цифр овая	179	RW	ch_time
Максимальная текущая месячная входная	Анал огова	<u> </u>	_	
мощность	я Анал	9	R	POTENZA_MESE_MAX1
Максимальная входная мощность для предыдущего месяца	огова я	10	R	POTENZA_MESE_PREC_MAX1
	Анал огова		_	
Максимальная текущая годовая входная мощность	я Анал	11	R	POTENZA_ANNO_MAX1
Максимальная входная мощность для предыдущего года	огова я	12	R	POTENZA_ANNO_PREC_MAX1
	Анал огова	10		
I юлная потребленная энергия	я Анал	13	К	I HOUSANDWH FOT
Полная потребленная энергия (в тысячах)	огова я	14	R	MILIONWHTOT

	Анал			
	огова			
Полная потребленная энергия (в миллионах)	я	15	R	BILIONWHTOT
	Анал			
Ожилаемое месячное потребление	огова я	22	R	KWH PREVISTI MESE
	Анал			
	огова			
Ожидаемое месячное потребление (в тысячах)	я	23	R	MWH_PREVISTI_MESE
	Анал			
	огова	24	P	GWH PREVISTI MESE
Ожидаемое месячное потреоление (в миллионах)	л Анал	27		
	огова			
Ожидаемое годовое потребление	я	25	R	KWH_PREVISTI_ANNO
	Анал			
	огова	26	D	
Ожидаемое тодовое потреоление (в тысячах)	я Анап	20		
	огова			
Ожидаемое годовое потребление (в миллионах)	я	27	R	GWH_PREVISTI_ANNO
	Анал			
Температура при полностью открытом 3-	огова	20		
направленном вентиле	Я Аноп	29	RW	II_INF_RAMPA
Температура при попностью закрытом 3-	огова			
направленном вентиле	я	30	RW	T SUP RAMPA
	Анал			
	огова			
Рабочая точка внешней температуры	я	31	RW	TSETPO
	Анал			
пропорциональный диапазон для компенсации	огова	32	RW/	
	Анап	52		
	огова			
Смещение компенсации рабочей точки	я	33	RW	OFFCP
	Анал			
	огова		_	
I ютребленная энергия для рефрижерации	Я	41	R	THOUSANDWHREFRI
Потребленная энергия для рефрижерации (в	огова			
тысячах)	я	42	R	MILIONWHREFRI
· · · · · · · · · · · · · · · · · · ·	Анал			
Потребленная энергия для рефрижерации (в	огова		_	
миллионах)	Я	43	R	BILIONWHREFRI
Потреблениза знергия пла конлинионирования	Анал			
возлуха	я	44	R	THOUSANDWHCONDI
	Анал			
Потребленная энергия для кондиционирования	огова			
воздуха (в тысячах)	я	45	R	MILIONWHCONDI
D 6_	Анал			
потреоленная энергия для кондиционирования	огова	46	P	
	Анал	-0		
Минимальная температура для рабочего цикла	огова			
нагревания	я	50	RW	TDC1
	Анал			
Максимальная температура для рабочего цикла	огова	F 4		TDOO
нагревания	Я	51	RW	
Минимальная температура для рабочего цикла	огова			
охлаждения	я	52	RW	TDC3
	Анал	-		
Максимальная температура для рабочего цикла	огова			
охлаждения	я	53	RW	TDC4
	Анал			
	огова	54	RW/	OFESET NTC4
омощение для дат чика паружной температуры	Анап	57		
	огова			
Смещение для датчика температуры воды	я	55	RW	OFFSET_NTC5
	Анал			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	огова	50		OFFORT NTOT
смещение для датчика внутренней температуры	Я	90	RW	UFFSET_NTC/

	Анал			
Попира средная потребленная мощность	огова	57	P	
Полная средняя потреоленная мощноств	Анал	57	IX	
	огова		_	
Средняя мощность на кондиционирование воздуха	Я Аноп	58	R	POTENZA_CONDI
	огова			
Средняя мощность на рефрижерацию	я	59	R	POTENZA_REFRI
	Анал			
Внешняя температура	лова Я	63	R	TEMP AMB
	Анал			
	огова	64	P	
Температура воды	Анал	0 <del>.</del>		
	огова		_	
Сумеречный датчик 4-20 мА	Я Дырп	65	R	CREPUSCOLARE4_20MA
	огова			
Внутренняя температура	я	66	R	TEMP_INT
	Анал			
Положение 3-направленного вентиля	я	67	R	V3VIE
· ·	Анал			
Входная мошность	огова	69	R	
Входная мощноств	Анал	03		
	огова		_	
Ограничение по мощности	Я Аноп	70	R	POTENZA_MAX3
	огова			
Входная мощность для рефрижерации	я	74	R	CONS_IST_REFRI
	Анал			
Входная мощность для кондиционирования воздуха	огова Я	75	R	CONS IST CONDI
	Цело			
	числе	1 15		
Поминальная мощность нагрузки 1 - 15	Цело	1-15		LOADT-LOADTS
	числе			
Приоритет нагрузки номер 1 -15	нная	16-30	RW	PRIORITAC1 - PRIORITAC15
Иинимальное время отключения для нагрузки	числе			
номер 1 -15	нная	31-45	RW	TEMPO_MIN_OFF1 - TEMPO_MIN_OFF15
	Цело			
номер 1 - 15	нная	46-60	RW	TEMPO_MAX_OFF1 - TEMPO_MAX_OFF15
	Цело			
Минимальное время включения для нагрузки номер	числе	61-75	RW/	
	Цело	01-75		
Активация стандартного диапазона для нагрузки	числе			
номер 1 -15	нная	76-90	RW	SCELTAFASCIAC1 - SCELTAFASCIAC15
	числе			
Максимальная мощность системы	нная	91	RW	POTENZA_MAX
	Цело			
и вход преобразователя тока для сигнала 4	нная	92	RW	POTENZA 4MA
	Цело			
Полный вход преобразователя тока для сигнала 20	числе	02		DOTENIZA 20MA
	нная Цело	95		FOTENZA_ZUNIA
	числе			
Ограничение по мощности для F1	нная	95	RW	POTENZA_P
	цело чиспе			
Ограничение по мощности для F2	нная	96	RW	POTENZA_A
	Цело			
Ограничение по мошности для часов ЕЗ	числе ннаа	97	RW	POTENZA M
	Цело			
	числе			
Ограничение по мощности для F4	нная	98	RW	POTENZA_V

	Цело			
Рабочая точка аналогового датчика освещенности	числе	99	RW/	SET SENSORE LUCE / 20MA
(01 4 <u>40 20 MA)</u>	Цело	99		SET_SENSORE_LOCE_4_2000A
Нагрузка, активированная для функции оптимального	числе			
запуска-останова	нная	100	RW	OPTIMUMSS
	числе			
Мощность системы рефрижерации	нная	101	RW	POTENZA_REFRI_MAX
	Цело			
Мошность системы кондиционирования воздуха	числе	102	RW	POTENZA CONDI MAX
	Цело	102		
Вход преобразователя тока для рефрижерации для	числе	100	-	
сигнала 4 мА	нная	103	RW	POTENZA_REFRI_4MA
Вход преобразователя тока для рефрижерации для	числе			
сигнала 20 мА	нная	104	RW	POTENZA_REFRI_20MA
	Цело			
воздуха для сигнала 4 мА	нная	105	RW	POTENZA CONDI 4MA
	Цело			
Вход преобразователя тока для кондиционирования	числе	100		DOTENIZA CONDI 2014A
воздуха для сигнала 20 мА	нная Пепо	106	RW	POTENZA_CONDI_ZUMA
	числе			
Продолжительность рабочего цикла	нная	107	RW	TIDC
	Цело			
цикла	нная	108	RW	TSMIDC
	Цело			
Максимальное время отключения для рабочего	числе	100		TEMPO
цикла	нная Пепо	109	RVV	
	числе			
Обновление для мощности	нная	112	RW	REFRESH_POTENZA
	цело			
Установка часов и минут	нная	113	RW	OREMIN_ORARIO_ENERGY_CH
	Цело			
Установка лид и месяца	числе	114	RW	DAYMONTH ENERGY CH
	Цело	117	1	
	числе			
Установка года	нная	115	RW	LYEAR
Установка для недели (1 = воскресенье; 7 =	числе			
суббота)	нная	116	RW	LWEEKDAY
	Цело			
15: 1= 30: 2= 45: 3= 60 мин.)	нная	117	RW	INT INTEG
	Цело			
	числе	110		
Вес импульса	нная Пепо	110	RVV	
Тип входа мощности (0= импульсы; 1= аналоговый	числе			
сигнал)	нная	119	RW	I_ENERGIA
	цело			
Часы и минуты	нная	120	R	ORARIO_ENERGY
	Цело			
Месации лень	числе	121	R	DAYMONTH ENERGY
	Цело	121		
	числе			
Год	нная	122	R	PYEAR
	числе			
День недели (1 = воскресенье; 7 = суббота)	нная	123	R	WEEKDAY
	Авар			
	иины й			
	сигна			
Не подключено	Л	0	R	OFFLINE
Системный аварийный сигнал	авар ийны	20	R	ALL

	Й			
	сигна Л			
	Авар			
	й Й			
	сигна	156 162	D	MAL 101 MAL 107
	л Авар	150-102	ĸ	
	ИЙНЫ			
	и сигна			
Превышение порога мощности	Л	163	R	MAL_ESUBEROPOT
	Авар ийны			
	й			
Ошибка часов на плате	сигна л	164	R	MAL CLK
	Авар			
	иины й			
	сигна	405	-	
Ошиока флэш-памяти	л Авар	165	ĸ	MAL_MEMFLASH
	ийны ~			
	и сигна			
Общий аварийный сигнал	л	166	R	MAN_GLB_AL
	авар ийны			
	й			
Задержка сигнала синхронизации	сигна л	173	R	MAL RIT SINCRO
	Авар	-		
	ийны й			
	сигна		_	
Преждевременный сигнал синхронизации	л Авар	174	ĸ	MAL_ANT_SINCRO
	ийны			
	и сигна			
Сбой или отключение на входе D3	Л	175	R	MAL_POT_NULLA
  Часы и минуты (до полудня (АМ)) включения для	Анал огова			
ежедневного временного диапазона 1	Я	76	RW	OREMIN_ON_1A
  Часы и минуты (после полудня (PM)) включения для	Анал огова			
ежедневного временного диапазона 1	я	77	RW	OREMIN_ON_1B
  Часы и минуты (до полудня (АМ)) включения для	Анал огова			
ежедневного временного диапазона 2	Я	78	RW	OREMIN_ON_2A
Часы и минуты (после полудня (РМ)) включения лля	Анал огова			
ежедневного временного диапазона 2	я	79	RW	OREMIN_ON_2B
  Часы и минуты (до полудня (АМ)) включения для	Анал огова			
ежедневного временного диапазона 3	Я	80	RW	OREMIN_ON_3A
 Часы и минуты (после полудня (РМ)) включения для	Анал огова			
ежедневного временного диапазона 3	Я	81	RW	OREMIN_ON_3B
  Часы и минуты (до полудня (АМ)) отключения для	Анал огова			
ежедневного временного диапазона 1	я	82	RW	OREMIN_OFF_1A
Часы и минуты (поспе популня (РМ)) отключения	Анал огова			
для ежедневного временного диапазона 1	я	83	RW	OREMIN_OFF_1B
 Часы и минуты (до популня (АМ)) отключения для	Анал огова			
ежедневного временного диапазона 2	я	84	RW	OREMIN_OFF_2A
Часы и минуты (после популня (РМ)) отключения	Анал огова			
для ежедневного временного диапазона 2	я	85	RW	OREMIN_OFF_2B
 Часы и минуты (до попудня (АМ)) отключения для	Анал огова			
ежедневного временного диапазона 3	я	86	RW	OREMIN_OFF_3A

	Анал			
Часы и минуты (после полудня (РМ)) отключения	огова			
для ежедневного временного диапазона 3	я	87	RW	OREMIN_OFF_3B
	Анал			
Часы и минуты (до полудня (АМ)) включения для	огова			
еженедельного временного диапазона 7	я	88	RW	OREMIN_ON_WA7
	Анал			
Часы и минуты (до полудня (AM)) включения для	огова	<u>00</u>		
еженедельного временного диапазона т	я Дырп	09		OREMIN_ON_WAT
Часы и минуты (до попудня (АМ)) включения для	огова			
еженелепьного временного лиапазона 2	я	90	RW	OREMIN ON WA2
	Анал			
Часы и минуты (до полудня (АМ)) включения для	огова			
еженедельного временного диапазона 3	я	91	RW	OREMIN_ON_WA3
	Анал			
Часы и минуты (до полудня (АМ)) включения для	огова			
еженедельного временного диапазона 4	Я	92	RW	OREMIN_ON_WA4
	Анал			
Расы и минуты (до полудня (Ам)) включения для	а	<b>0</b> 3	RW/	OREMIN ON WAS
	Анап	50	1	
Часы и минуты (до полудня (АМ)) включения для	огова			
еженедельного временного диапазона 6	я	94	RW	OREMIN_ON_WA6
	Анал			
Часы и минуты (до полудня (АМ)) отключения для	огова			
еженедельного временного диапазона 7	я	95	RW	OREMIN_OFF_WA7
	Анал			
Часы и минуты (до полудня (АМ)) отключения для	огова	00		
еженедельного временного диапазона 1	Я	96	RW	UKEMIN_UFF_WA1
	Анал			
Расы и минуты (до полудня (Ам)) отключения для	а	97	RW/	OREMIN OFE WA2
	Анап	57	1	
Часы и минуты (до полудня (АМ)) отключения для	огова			
еженедельного временного диапазона 3	я	98	RW	OREMIN OFF WA3
	Анал			
Часы и минуты (до полудня (АМ)) отключения для	огова			
еженедельного временного диапазона 4	я	99	RW	OREMIN_OFF_WA4
	Анал			
Часы и минуты (до полудня (АМ)) отключения для	огова	100		ODEMIN OFF WAF
еженедельного временного диапазона 5	Я	100	RW	
Часы и минуты (до попудня (АМ)) отключения для	огова			
еженедельного временного диапазона 6	я	101	RW	OREMIN OFF WA6
	Анал			
Часы и минуты (после полудня (РМ)) включения для	огова			
еженедельного временного диапазона 7	я	102	RW	OREMIN_ON_WB7
	Анал			
Часы и минуты (после полудня (РМ)) включения для	огова			
еженедельного временного диапазона 1	Я	103	RW	UKEMIN_UN_WB1
	Анал			
еженелепьного временного лиапазона 2	g UBB	104	RW/	OREMIN ON WB2
	Анал			
Часы и минуты (после полудня (РМ)) включения для	огова			
еженедельного временного диапазона 3	я	105	RW	OREMIN_ON_WB3
	Анал			
Часы и минуты (после полудня (РМ)) включения для	огова			
еженедельного временного диапазона 4	я	106	RW	OREMIN_ON_WB4
	Анал			
часы и минуты (после полудня (PM)) включения для	огова	107		
елепедельного временного дианазона э	и Лиоп	107	17.00	
Часы и минуты (поспе популня (РМ)) включения для	огова			
еженедельного временного диапазона 6	я	108	RW	OREMIN ON WB6
	Анал		1	
Часы и минуты (после полудня (РМ)) отключения	огова			
для еженедельного временного диапазона 7	я	109	RW	OREMIN_OFF_WB7
	Анал			
Часы и минуты (после полудня (РМ)) отключения	огова	110		
для еженедельного временного диапазона 1	Я	110	RW	
	Анал			
пасы и минуты (после полудня (РМ)) отключения	a oi OBa	111	RW/	OREMIN OFE WB2

	Анал			
Часы и минуты (после полудня (РМ)) отключения	огова			
для еженедельного временного диапазона 3	я	112	RW	OREMIN_OFF_WB3
	Анал			
Часы и минуты (после полудня (РМ)) отключения	огова	110		ODEMIN, OFF WD4
для еженедельного временного диапазона 4	я	113	RW	OREMIN_OFF_WB4
	Анал			
Часы и минуты (после полудня (РМ)) отключения	огова	111		
Для еженедельного временного диапазона 5	Я	114	RW	
	Анал			
Часы и минуты (после полудня (гил)) отключения	огова	115		
для еженедельного временного диапазона о	Ацоп	115		
	огова			
день и месяц для специального временного	а	116	RW/	
	Анап	110	1	
Лень и месяц для специального временного	огова			
допа и месяц для сподлального временного	я	117	RW	DAYMONTHSP3
	Анал			
День и месяц для специального временного	огова			
диапазона 4	я	118	RW	DAYMONTHSP4
	Анал	-		
Часы и минуты (до полудня (АМ)) включения для	огова			
специального временного диапазона 3	я	119	RW	OREMIN_ON_AS3
	Анал			
Часы и минуты (после полудня (РМ)) включения для	огова			
специального временного диапазона 3	я	120	RW	OREMIN_ON_BS3
	Анал			
Часы и минуты (до полудня (АМ)) отключения для	огова			
специального временного диапазона 3	я	121	RW	OREMIN_OFF_AS3
	Анал			
Часы и минуты (после полудня (РМ)) отключения	огова			
для специального временного диапазона 3	я	122	RW	OREMIN_OFF_BS3
	Анал			
Часы и минуты (до полудня (АМ)) включения для	огова			
специального временного диапазона 4	я	123	RW	OREMIN_ON_AS4
	Анал			
Часы и минуты (после полудня (РМ)) включения для	огова			
специального временного диапазона 4	я	124	RW	OREMIN_ON_BS4
	Анал			
часы и минуты (до полудня (АМ)) отключения для	огова	105		ODENIN OFF ACA
специального временного диапазона 4	Я	125	KW	
	Анал			
Часы и минуты (после полудня (РМ)) отключения	огова	100		ODEMIN OFF BS4
для специального временного диапазона 4	Я	120	RW	

Таблица 10.1

### 12. СХЕМЫ СОЕДИНЕНИЙ

### 12.1 Модель «LARGE»



Γ	Limit of the	Ограничение для
	appliance	устройства
	DIGITAL	ЦИФРОВЫЕ
	OUTPUTS	ВЫХОДЫ



ANALOGUE - DIGITAL INPUTS	АНАЛОГОВЫЕ – ЦИФРОВЫЕ ВХОДЫ
ELEC.COMPANY CONTACTOR	КОНТАКТОР ЭЛЕКТРИЧЕСКОЙ КОМПАНИИ
CONNECTIONS TO BE MADE WITH INTERFACE TO	ПОДКЛЮЧЕНИЯ ДОЛЖНЫ ВЫПОЛНЯТЬСЯ С
ELECTRICITY COMPANY METER	ИСПОЛЬЗОВАНИЕМ ИНТЕРФЕЙСА К ИЗМЕРИТЕЛЮ
	ЭЛЕКТРИЧЕСКОЙ КОМПАНИИ
IME INSTRUMENT	ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО ІМЕ
CONNECTIONS TO BE MADE WITH INTERFACE TO	ПОДКЛЮЧЕНИЯ ДОЛЖНЫ ВЫПОЛНЯТЬСЯ С
IME INSTRUMENT	ИСПОЛЬЗОВАНИЕМ ИНТЕРФЕЙСА К ИЗМЕРИТЕЛЬНОМУ
	УСТРОЙСТВУ ІМЕ

Рис. 12.2



Limit of the appliance	Ограничение для устройства
DIGITAL OUTPUTS	ЦИФРОВЫЕ ВЫХОДЫ



CABLES TO BE PROVIDED BY THE CUSTOMER



CABLES TO BE PROVIDED BY THE CUSTOMER	КАБЕЛИ, КОТОРЫЕ ПРИОБРЕТАЮТСЯ ЗАКАЗЧИКОМ
ANALOGUE - DIGITAL INPUTS	АНАЛОГОВЫЕ – ЦИФРОВЫЕ ВХОДЫ
ELEC. COMPANY CONTACTOR	КОНТАКТОР ЭЛЕКТРИЧЕСКОЙ КОМПАНИИ
CONNECTIONS TO BE MADE WITH INTERFACE	ПОДКЛЮЧЕНИЯ ДОЛЖНЫ ВЫПОЛНЯТЬСЯ С ИСПОЛЬЗОВАНИЕМ
TO ELECTRICITY COMPANY METER	ИНТЕРФЕЙСА ИЗМЕРИТЕЛЯ ЭЛЕКТРИЧЕСКОЙ КОМПАНИИ
IME INSTRUMENT	ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО ІМЕ
CONNECTIONS TO BE MADE WITH INTERFACE	ПОДКЛЮЧЕНИЯ ДОЛЖНЫ ВЫПОЛНЯТЬСЯ С ИСПОЛЬЗОВАНИЕМ
TO IME INSTRUMENT	ИНТЕРФЕЙСА К ИЗМЕРИТЕЛЬНОМУ УСТРОЙСТВУ ІМЕ
prototype	модель

### 13. ТЕХНИЧЕСКИЕ СПЕЦИФИКАЦИИ

источник питания	1Р + N + G 230 В переменного тока (+/- 10%) 50 Гц.
показатель защиты	IP40 – только для передней панели, IP65 – с закрывающейся
	дверцей
условия хранения	• от -20 до 70 °С
	• относительная влажность от 20 до 80 %, неконденсирующаяся
условия работы	• от -10 до 50 °С
	• относительная влажность от 20 до 80 %, неконденсирующаяся
загрязнение окружающей среды:	стандартные условия
подключение источника питания	непосредственно к выключателю
дополнительное подключение	клеммы сечением 2,5 мм ² ):
цвет	серый RAL 7035 – дверца из дымчатого стекла
изоляция	двойная
гарантируется открывание дверцы > 180°	
загрязнение окружающей среды:	стандартные условия
класс защиты от поражения электрическим током	соответствует классу I и/или II
Значение РТІ для изолирующих материалов	250 B
период нагрузки на изолированные части	длительный
тип работы устройства	1C
тип отключения или микрокоммутации	микрокоммутация
категория стойкости к нагреву и возгоранию	категория D (UL94 - V0)
защищенность от бросков напряжения	категория 1
количество автоматических рабочих циклов (например, для	100 000
реле)	
класс ПО и структура	Класс А
источник питания электронного контроллера	от 22 до 40 В постоянного тока и 24 В переменного тока $\pm$ 15% с
	частотой от 50 до 60 Гц
	Максимальная входная мощность: 20 Вт
терминальный блок	максимальное напряжение 250 В переменного тока
центральный процессор	Н83002, 16 бит, 14 МГц
программная память (на флэш-памяти)	1 МБ с разрядностью 16 бит (возможно расширение до 6 МБ)
память данных (статическое ОЗУ)	256 КБ с разрядностью 16 бит (возможно расширение до 1 МБ)
память данных параметров	2 КБ со словом 16 бит (максимальное ограничение: 400 000 циклов
	записи в ячейку памяти)



### Tecnologia ed Evoluzione

**CAREL S.p.A.** Via dell'Industria, 11 - 35020 Brugine - Padova (Italy) Tel. (+39) 049.9716611 Fax (+39) 049.9716600 http://www.carel.com - e-mail: carel@carel.com

Agenzia / Agency:

+030220249 rel. 1.1 del 14/09/05